Deep Learning Models for Predicting Gas Adsorption Capacity of Nanomaterials.

Wenjing Guo, Jie Liu, Fan Dong, Ru Chen, Jayanti Das, Weigong Ge, Xiaoming Xu, Huixiao Hong
Author Information
  1. Wenjing Guo: National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA.
  2. Jie Liu: National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA.
  3. Fan Dong: National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA.
  4. Ru Chen: Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA.
  5. Jayanti Das: Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA.
  6. Weigong Ge: National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA.
  7. Xiaoming Xu: Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA. ORCID
  8. Huixiao Hong: National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA. ORCID

Abstract

Metal-organic frameworks (MOFs), a class of porous nanomaterials, have been widely used in gas adsorption-based applications due to their high porosities and chemical tunability. To facilitate the discovery of high-performance MOFs for different applications, a variety of machine learning models have been developed to predict the gas adsorption capacities of MOFs. Most of the predictive models are developed using traditional machine learning algorithms. However, the continuously increasing sizes of MOF datasets and the complicated relationships between MOFs and their gas adsorption capacities make deep learning a suitable candidate to handle such big data with increased computational power and accuracy. In this study, we developed models for predicting gas adsorption capacities of MOFs using two deep learning algorithms, multilayer perceptron (MLP) and long short-term memory (LSTM) networks, with a hypothetical set of about 130,000 structures of MOFs with methane and carbon dioxide adsorption data at different pressures. The models were evaluated using 10 iterations of 10-fold cross validations and 100 holdout validations. The MLP and LSTM models performed similarly with high prediction accuracy. The models for predicting gas adsorption at a higher pressure outperformed the models for predicting gas adsorption at a lower pressure. The deep learning models are more accurate than the random forest models reported in the literature, especially for predicting gas adsorption capacities at low pressures. Our results demonstrated that deep learning algorithms have a great potential to generate models that can accurately predict the gas adsorption capacities of MOFs.

Keywords

References

  1. Environ Sci Technol. 2020 Sep 15;54(18):11424-11433 [PMID: 32786601]
  2. Nat Commun. 2019 Apr 5;10(1):1568 [PMID: 30952862]
  3. J Chem Theory Comput. 2020 Feb 11;16(2):1271-1283 [PMID: 31922755]
  4. ACS Comb Sci. 2017 Oct 9;19(10):640-645 [PMID: 28800219]
  5. J Chem Inf Model. 2021 May 24;61(5):2131-2146 [PMID: 33914526]
  6. Chem Res Toxicol. 2015 Sep 21;28(9):1784-95 [PMID: 26308263]
  7. Antivir Chem Chemother. 1998 Nov;9(6):461-72 [PMID: 9865384]
  8. Front Chem. 2021 Jan 05;8:622632 [PMID: 33469527]
  9. Brief Bioinform. 2017 Jul 1;18(4):682-697 [PMID: 27296652]
  10. J Am Chem Soc. 2020 Feb 26;142(8):3814-3822 [PMID: 32017547]
  11. Chem Res Toxicol. 2015 Dec 21;28(12):2343-51 [PMID: 26524122]
  12. J Phys Chem A. 2019 Jul 18;123(28):6080-6087 [PMID: 31264869]
  13. Chem Soc Rev. 2014 Aug 21;43(16):5657-78 [PMID: 24658531]
  14. BMC Bioinformatics. 2014;15 Suppl 11:S4 [PMID: 25349983]
  15. ACS Appl Mater Interfaces. 2020 Jul 29;12(30):34041-34048 [PMID: 32613831]
  16. SAR QSAR Environ Res. 2002 Mar;13(1):69-88 [PMID: 12074393]
  17. Chem Rev. 2012 Feb 8;112(2):1232-68 [PMID: 22168547]
  18. J Am Chem Soc. 2015 Oct 21;137(41):13308-18 [PMID: 26364990]
  19. Environ Health Perspect. 2020 Jun;128(6):67010 [PMID: 32692251]
  20. J Am Chem Soc. 2013 Aug 14;135(32):11887-94 [PMID: 23841800]
  21. Toxicol Sci. 2013 Oct;135(2):277-91 [PMID: 23897986]
  22. Nanomedicine. 2015 Oct;11(7):1689-94 [PMID: 26051651]
  23. Nat Chem. 2011 Nov 06;4(2):83-9 [PMID: 22270624]
  24. Chem Rev. 2020 Aug 26;120(16):8066-8129 [PMID: 32520531]
  25. Sci Rep. 2017 Dec 11;7(1):17311 [PMID: 29229971]
  26. Science. 2019 Nov 22;366(6468): [PMID: 31753970]
  27. ACS Appl Mater Interfaces. 2020 Nov 25;12(47):52797-52807 [PMID: 33175490]
  28. ACS Appl Mater Interfaces. 2021 May 26;13(20):23647-23654 [PMID: 33988362]
  29. Food Chem Toxicol. 2018 Feb;112:495-506 [PMID: 28843597]
  30. ACS Omega. 2020 Mar 02;5(10):5048-5060 [PMID: 32201791]
  31. Adv Mater. 2021 Nov;33(46):e2107344 [PMID: 34780119]
  32. Oncotarget. 2017 Oct 10;8(54):92989-93000 [PMID: 29190972]
  33. SAR QSAR Environ Res. 2005 Aug;16(4):339-47 [PMID: 16234175]
  34. Bioinform Biol Insights. 2015 Oct 11;9(Suppl 3):21-9 [PMID: 26512199]

Word Cloud

Created with Highcharts 10.0.0modelsgasadsorptionMOFslearningcapacitiesdeeppredictingdevelopedusingalgorithmsapplicationshighdifferentmachinepredictdataaccuracyMLPLSTMpressuresvalidationspressureMetal-organicframeworksclassporousnanomaterialswidelyusedadsorption-baseddueporositieschemicaltunabilityfacilitatediscoveryhigh-performancevarietypredictivetraditionalHowevercontinuouslyincreasingsizesMOFdatasetscomplicatedrelationshipsmakesuitablecandidatehandlebigincreasedcomputationalpowerstudytwomultilayerperceptronlongshort-termmemorynetworkshypotheticalset130000structuresmethanecarbondioxideevaluated10iterations10-foldcross100holdoutperformedsimilarlypredictionhigheroutperformedloweraccuraterandomforestreportedliteratureespeciallylowresultsdemonstratedgreatpotentialgeneratecanaccuratelyDeepLearningModelsPredictingGasAdsorptionCapacityNanomaterialsmetal–organicframework

Similar Articles

Cited By