Biomimetic Targeted Theranostic Nanoparticles for Breast Cancer Treatment.

Suphalak Khamruang Marshall, Pavimol Angsantikul, Zhiqing Pang, Norased Nasongkla, Rusnah Syahila Duali Hussen, Soracha D Thamphiwatana
Author Information
  1. Suphalak Khamruang Marshall: Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand. ORCID
  2. Pavimol Angsantikul: Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, USA. ORCID
  3. Zhiqing Pang: Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China. ORCID
  4. Norased Nasongkla: Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, Nakorn Pathom 73170, Thailand.
  5. Rusnah Syahila Duali Hussen: Chemistry Department, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia.
  6. Soracha D Thamphiwatana: Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand. ORCID

Abstract

The development of biomimetic drug delivery systems for biomedical applications has attracted significant research attention. As the use of cell membrane as a surface coating has shown to be a promising platform for several disease treatments. Cell-membrane-coated nanoparticles exhibit enhanced immunocompatibility and prolonged circulation time. Herein, human red blood cell (RBC) membrane-cloaked nanoparticles with enhanced targeting functionality were designed as a targeted nanotheranostic against cancer. Naturally, derived human RBC membrane modified with targeting ligands coated onto polymeric nanoparticle cores containing both chemotherapy and imaging agent. Using epithelial cell adhesion molecule (EpCAM)-positive MCF-7 breast cancer cells as a disease model, the nature-inspired targeted theranostic human red blood cell membrane-coated polymeric nanoparticles (TT-RBC-NPs) platform was capable of not only specifically binding to targeted cancer cells, effectively delivering doxorubicin (DOX), but also visualizing the targeted cancer cells. The TT-RBC-NPs achieved an extended-release profile, with the majority of the drug release occurring within 5 days. The TT-RBC-NPs enabled enhanced cytotoxic efficacy against EpCAM positive MCF-7 breast cancer over the non-targeted NPs. Additionally, fluorescence images of the targeted cancer cells incubated with the TT-RBC-NPs visually indicated the increased cellular uptake of TT-RBC-NPs inside the breast cancer cells. Taken together, this TT-RBC-NP platform sets the foundation for the next-generation stealth theranostic platforms for systemic cargo delivery for treatment and diagnostic of cancer.

Keywords

References

  1. Int J Nanomedicine. 2007;2(4):567-83 [PMID: 18203425]
  2. Cells. 2019 Aug 13;8(8): [PMID: 31412631]
  3. J Control Release. 2017 Jan 10;245:27-40 [PMID: 27865853]
  4. Int J Nanomedicine. 2019 Jun 17;14:4431-4448 [PMID: 31354269]
  5. J Drug Deliv. 2013;2013:456409 [PMID: 23634302]
  6. Nanomedicine (Lond). 2013 Aug;8(8):1271-80 [PMID: 23409747]
  7. PDA J Pharm Sci Technol. 1998 Mar-Apr;52(2):66-9 [PMID: 9610170]
  8. Pathogens. 2021 Jul 30;10(8): [PMID: 34451433]
  9. Nat Nanotechnol. 2007 Dec;2(12):751-60 [PMID: 18654426]
  10. Nano Lett. 2008 Aug;8(8):2180-7 [PMID: 18605701]
  11. Anal Biochem. 2016 Dec 15;515:47-54 [PMID: 27717854]
  12. Clin Pharmacol Ther. 2010 May;87(5):543-52 [PMID: 20237469]
  13. Ann Oncol. 2012 Oct;23 Suppl 7:vii155-66 [PMID: 22997448]
  14. Nat Biotechnol. 2015 Sep;33(9):941-51 [PMID: 26348965]
  15. Methods Mol Biol. 2018;1682:91-102 [PMID: 29039096]
  16. Bioorg Med Chem Lett. 2020 Jun 15;30(12):127151 [PMID: 32317211]
  17. Pharmaceutics. 2018 May 18;10(2): [PMID: 29783687]
  18. ACS Appl Bio Mater. 2019 Sep 16;2(9):4077-4086 [PMID: 35021341]
  19. Proc Natl Acad Sci U S A. 2014 Sep 16;111(37):13481-6 [PMID: 25197051]
  20. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2022 May;14(3):e1776 [PMID: 35106966]
  21. NPJ Precis Oncol. 2017 Sep 1;1(1):27 [PMID: 29872709]
  22. CA Cancer J Clin. 2021 May;71(3):209-249 [PMID: 33538338]
  23. ACS Nano. 2018 Jan 23;12(1):109-116 [PMID: 29216423]
  24. Annu Rev Pharmacol Toxicol. 2021 Jan 6;61:269-289 [PMID: 32841092]
  25. Nat Rev Mater. 2017;2: [PMID: 29075517]
  26. J Nanosci Nanotechnol. 2013 Oct;13(10):6485-98 [PMID: 24245105]
  27. Cell Prolif. 2015 Aug;48(4):465-74 [PMID: 26017818]
  28. Adv Mater. 2009;21:419-424 [PMID: 19606281]
  29. ACS Appl Bio Mater. 2021 Mar 15;4(3):2293-2306 [PMID: 35014352]
  30. Nanoscale. 2021 Jun 28;13(24):10748-10764 [PMID: 34132312]
  31. J Nanobiotechnology. 2022 Jan 21;20(1):45 [PMID: 35062958]
  32. Nano Converg. 2021 Aug 16;8(1):24 [PMID: 34398322]
  33. Theranostics. 2016 Apr 28;6(7):1004-11 [PMID: 27217833]
  34. Nanoscale. 2013 Oct 7;5(19):8884-8 [PMID: 23907698]
  35. Expert Opin Drug Deliv. 2012 Nov;9(11):1319-23 [PMID: 22931049]
  36. Adv Mater. 2015 Jun 10;27(22):3437-43 [PMID: 25931231]
  37. Nature. 2015 Oct 1;526(7571):118-21 [PMID: 26374997]
  38. ChemMedChem. 2008 Dec;3(12):1839-43 [PMID: 19012296]
  39. Colloids Surf B Biointerfaces. 2005 Feb 10;40(2):83-91 [PMID: 15642458]
  40. Chin Med J (Engl). 2022 Feb 9;135(5):584-590 [PMID: 35143424]
  41. Nano Lett. 2014;14(4):2181-8 [PMID: 24673373]
  42. Br J Cancer. 2004 Nov 15;91(10):1775-81 [PMID: 15477860]
  43. Proc Natl Acad Sci U S A. 2011 Jul 5;108(27):10980-5 [PMID: 21690347]
  44. Biology (Basel). 2020 Nov 18;9(11): [PMID: 33218092]
  45. Curr Radiopharm. 2012 Apr;5(2):158-65 [PMID: 22280113]
  46. Cancer Treat Rev. 2012 Feb;38(1):68-75 [PMID: 21576002]
  47. Chem Rev. 2014 Aug 13;114(15):7740-81 [PMID: 24927254]
  48. Biomater Sci. 2019 Oct 1;7(10):4027-4035 [PMID: 31389406]
  49. Chem Soc Rev. 2012 Apr 7;41(7):2971-3010 [PMID: 22388185]
  50. J Colloid Interface Sci. 2020 Mar 22;564:204-215 [PMID: 31911225]
  51. J Biomed Opt. 2015 May;20(5):55002 [PMID: 25938206]
  52. Proc Natl Acad Sci U S A. 2017 Oct 24;114(43):11488-11493 [PMID: 29073076]
  53. Sci Rep. 2020 Nov 12;10(1):19738 [PMID: 33184416]
  54. Annu Rev Immunol. 2010;28:79-105 [PMID: 19968559]
  55. Toxicol Appl Pharmacol. 2016 May 15;299:70-7 [PMID: 26773813]

Grants

  1. MRG6280179/Thailand Research Fund

MeSH Term

Biomimetics
Breast Neoplasms
Doxorubicin
Drug Delivery Systems
Epithelial Cell Adhesion Molecule
Erythrocyte Membrane
Female
Humans
Nanoparticles
Precision Medicine
Theranostic Nanomedicine

Chemicals

Epithelial Cell Adhesion Molecule
Doxorubicin

Word Cloud

Created with Highcharts 10.0.0cancertargetedcellsTT-RBC-NPscellnanoparticlesplatformenhancedhumanbreastbiomimeticdrugdeliverymembranediseaseredbloodRBCtargetingpolymericEpCAMMCF-7theranosticdevelopmentsystemsbiomedicalapplicationsattractedsignificantresearchattentionusesurfacecoatingshownpromisingseveraltreatmentsCell-membrane-coatedexhibitimmunocompatibilityprolongedcirculationtimeHereinmembrane-cloakedfunctionalitydesignednanotheranosticNaturallyderivedmodifiedligandscoatedontonanoparticlecorescontainingchemotherapyimagingagentUsingepithelialadhesionmolecule-positivemodelnature-inspiredmembrane-coatedcapablespecificallybindingeffectivelydeliveringdoxorubicinDOXalsovisualizingachievedextended-releaseprofilemajorityreleaseoccurringwithin5daysenabledcytotoxicefficacypositivenon-targetedNPsAdditionallyfluorescenceimagesincubatedvisuallyindicatedincreasedcellularuptakeinsideTakentogetherTT-RBC-NPsetsfoundationnext-generationstealthplatformssystemiccargotreatmentdiagnosticBiomimeticTargetedTheranosticNanoparticlesBreastCancerTreatmentnanomedicinetheranostics

Similar Articles

Cited By