Monotropein Protects against Inflammatory Bone Loss and Suppresses Osteoclast Formation and Bone Resorption by Inhibiting NFATc1 via NF-κB and Akt/GSK-3β Pathway.

Qi Zhang, Sijing Hu, Yuqiong He, Zile Song, Yi Shen, Zihui Zhao, Quanlong Zhang, Luping Qin, Qiaoyan Zhang
Author Information
  1. Qi Zhang: School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
  2. Sijing Hu: School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
  3. Yuqiong He: Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
  4. Zile Song: School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
  5. Yi Shen: School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
  6. Zihui Zhao: School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
  7. Quanlong Zhang: School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China. ORCID
  8. Luping Qin: School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
  9. Qiaoyan Zhang: School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.

Abstract

Monotropein (Mon) is a kind of iridoid glycoside plant secondary metabolite primarily present in some edible and medicinal plants. The aim of this study was to investigate the effect of Mon on lipopolysaccharide (LPS)-induced inflammatory bone loss in mice and osteoclasts (OCs) derived from bone marrow-derived macrophages (BMMs), and explore the mechanisms underlying the effect of Mon on LPS-induced osteoclastogenesis. It was found that Mon markedly attenuated deterioration of the bone micro-architecture, enhanced tissue mineral content (TMC) and bone volume/total volume (BV/TV), reduced structure model index (SMI) and trabecular separation/spacing (Tb.Sp) in the bone tissue and decreased the activities of tartrate resistant acid phosphatase-5b (TRACP-5b), receptor activator NF-κB (RANK), and receptor activator NF-κB ligand (RANKL) as well as the serum levels of interleukin 6 (IL-6) and interleukin 1β (IL-1β) in LPS-treated mice. In addition, Mon treatment reduced the number of TRAP positive OCs in the bone tissue of LPS-treated mice and also exerted a stronger inhibitory effect on formation, differentiation, and F-actin ring construction of OCs derived from BMMs. Mon significantly inhibited the expression of the nuclear factor of activated T-cells c1 (NFATc1) and the immediate early gene (C-Fos) and nuclear translocation of NFATc1 in LPS-treated OCs, thereby inhibiting the expression of matrix metalloproteinase-9 (MMP-9), cathepsin K (CtsK), and TRAP. Mon significantly inhibited the expression of TRAF6, phosphorylation of P65, and degradation of IKBα, thus inhibiting the activation of NF-κB pathway in LPS-induced inflammatory mice and OCs derived from BMMs, and also inhibited LPS-induced phosphorylation of protein kinase B (Akt) and Glycogen synthase kinase 3β (GSK-3β) in OCs derived from BMMs. In conclusion, these results suggested that Mon could effectively inhibit osteoclastogenesis both in vitro and in vivo and therefore may prove to be potential option for prevention and treatment of osteoclastic bone resorption-related diseases.

Keywords

References

  1. Biol Pharm Bull. 2015;38(1):66-74 [PMID: 25744460]
  2. Food Funct. 2021 Sep 20;12(18):8492-8506 [PMID: 34302158]
  3. J Cell Mol Med. 2019 Oct;23(10):6730-6743 [PMID: 31328430]
  4. Int J Mol Sci. 2019 Sep 05;20(18): [PMID: 31491986]
  5. Endocrinology. 1989 Sep;125(3):1142-50 [PMID: 2788075]
  6. Eur J Pharmacol. 2020 Sep 15;883:173358 [PMID: 32710952]
  7. Phytomedicine. 2022 Feb;96:153838 [PMID: 34801352]
  8. Acta Pharmacol Sin. 2020 Feb;41(2):229-236 [PMID: 31431733]
  9. Int J Mol Sci. 2021 May 23;22(11): [PMID: 34071042]
  10. Curr Biol. 1997 Sep 1;7(9):638-44 [PMID: 9285717]
  11. J Bone Miner Res. 2010 Jun;25(6):1234-45 [PMID: 20200936]
  12. Biol Pharm Bull. 2005 Oct;28(10):1915-8 [PMID: 16204945]
  13. Food Res Int. 2017 Oct;100(Pt 3):462-468 [PMID: 28964369]
  14. Int J Biol Macromol. 2020 Dec 15;165(Pt B):2219-2230 [PMID: 33132123]
  15. Mol Med Rep. 2017 Nov;16(5):6228-6233 [PMID: 28849049]
  16. Mol Med Rep. 2020 Dec;22(6):4828-4836 [PMID: 33173962]
  17. Biochem Biophys Res Commun. 2007 Aug 24;360(2):346-51 [PMID: 17597583]
  18. Front Pharmacol. 2020 Mar 27;11:360 [PMID: 32292342]
  19. Nat Commun. 2017 Jan 19;8:13700 [PMID: 28102206]
  20. Biochem Biophys Res Commun. 2021 Oct 30;583:146-153 [PMID: 34763194]
  21. J Mol Med (Berl). 2017 Oct;95(10):1065-1076 [PMID: 28674855]
  22. Fitoterapia. 2016 Apr;110:166-72 [PMID: 26996879]
  23. J Cell Mol Med. 2020 Feb;24(3):2330-2341 [PMID: 31883297]
  24. J Dent Res. 2011 Feb;90(2):157-62 [PMID: 21270460]
  25. Oxid Med Cell Longev. 2021 Jan 7;2021:8836599 [PMID: 33505590]
  26. Food Chem Toxicol. 2013 Mar;53:263-71 [PMID: 23261679]
  27. Food Chem Toxicol. 2018 Oct;120:418-429 [PMID: 30048646]
  28. Chem Biol Interact. 2018 Aug 1;291:128-136 [PMID: 29908987]
  29. Ann N Y Acad Sci. 2006 Dec;1092:385-96 [PMID: 17308163]
  30. BMC Complement Altern Med. 2018 Oct 24;18(1):288 [PMID: 30355303]
  31. Front Pharmacol. 2019 Apr 10;10:367 [PMID: 31024321]
  32. Biomed Pharmacother. 2020 Sep;129:110408 [PMID: 32574971]
  33. Int Immunopharmacol. 2021 Nov;100:108113 [PMID: 34530203]
  34. Int Immunopharmacol. 2021 Jan;90:107137 [PMID: 33199235]
  35. Int J Mol Sci. 2021 Feb 25;22(5): [PMID: 33669069]
  36. J Immunol. 2012 Jan 1;188(1):163-9 [PMID: 22131333]
  37. Biomed Pharmacother. 2020 Jan;121:109566 [PMID: 31698268]
  38. Biol Pharm Bull. 2016;39(12):2028-2035 [PMID: 27904045]
  39. Int Immunopharmacol. 2017 Nov;52:230-237 [PMID: 28946117]

Grants

  1. No. LZ22H28002, U1505226/Natural Science Foundation of Zhejiang Province;National Natural Science Foundation of China

MeSH Term

Actins
Animals
Bone Resorption
Cathepsin K
Glycogen Synthase Kinase 3 beta
Interleukin-1beta
Interleukin-6
Iridoid Glycosides
Iridoids
Ligands
Lipopolysaccharides
Matrix Metalloproteinase 9
Mice
NF-kappa B
NFATC Transcription Factors
Osteoclasts
Proto-Oncogene Proteins c-akt
TNF Receptor-Associated Factor 6
Tartrate-Resistant Acid Phosphatase

Chemicals

Actins
Interleukin-1beta
Interleukin-6
Iridoid Glycosides
Iridoids
Ligands
Lipopolysaccharides
NF-kappa B
NFATC Transcription Factors
Nfatc1 protein, mouse
TNF Receptor-Associated Factor 6
monotropein
Glycogen Synthase Kinase 3 beta
Proto-Oncogene Proteins c-akt
Tartrate-Resistant Acid Phosphatase
Cathepsin K
Matrix Metalloproteinase 9

Word Cloud

Created with Highcharts 10.0.0MonboneOCsmicederivedBMMsNF-κBNFATc1effectinflammatoryLPS-inducedtissueLPS-treatedinhibitedexpressionMonotropeinlossosteoclastogenesisreducedreceptoractivatorinterleukintreatmentTRAPalsosignificantlynuclearinhibitingphosphorylationpathwaykinaseBonekindiridoidglycosideplantsecondarymetaboliteprimarilypresentediblemedicinalplantsaimstudyinvestigatelipopolysaccharideLPS-inducedosteoclastsmarrow-derivedmacrophagesexploremechanismsunderlyingfoundmarkedlyattenuateddeteriorationmicro-architectureenhancedmineralcontentTMCvolume/totalvolumeBV/TVstructuremodelindexSMItrabecularseparation/spacingTbSpdecreasedactivitiestartrateresistantacidphosphatase-5bTRACP-5bRANKligandRANKLwellserumlevels6IL-6IL-1βadditionnumberpositiveexertedstrongerinhibitoryformationdifferentiationF-actinringconstructionfactoractivatedT-cellsc1immediateearlygeneC-Fostranslocationtherebymatrixmetalloproteinase-9MMP-9cathepsinKCtsKTRAF6P65degradationIKBαthusactivationproteinBAktGlycogensynthaseGSK-3βconclusionresultssuggestedeffectivelyinhibitvitrovivothereforemayprovepotentialoptionpreventionosteoclasticresorption-relateddiseasesProtectsInflammatoryLossSuppressesOsteoclastFormationResorptionInhibitingviaAkt/GSK-3βPathwayAkt/GSK3βmonotropeinosteoclast

Similar Articles

Cited By