Deregulated hyaluronan metabolism in the tumor microenvironment drives cancer inflammation and tumor-associated immune suppression.

William Donelan, Paul R Dominguez-Gutierrez, Sergei Kusmartsev
Author Information
  1. William Donelan: Department of Urology, University of Florida, College of Medicine, Gainesville, FL, United States.
  2. Paul R Dominguez-Gutierrez: Department of Urology, University of Florida, College of Medicine, Gainesville, FL, United States.
  3. Sergei Kusmartsev: Department of Urology, University of Florida, College of Medicine, Gainesville, FL, United States.

Abstract

Hyaluronan (HA) is known to be a prominent component of the extracellular matrix in tumors, and many solid cancers are characterized by aberrant HA metabolism resulting in increased production in tumor tissue. HA has been implicated in regulating a variety of cellular functions in tumor cells and tumor-associated stromal cells, suggesting that altered HA metabolism can influence tumor growth and malignancy at multiple levels. Importantly, increased HA production in cancer is associated with enhanced HA degradation due to high levels of expression and activity of hyaluronidases (Hyal). Understanding the complex molecular and cellular mechanisms involved in abnormal HA metabolism and catabolism in solid cancers could have important implications for the design of future cancer therapeutic approaches. It appears that extensive crosstalk between immune cells and HA-enriched stroma contributes to tumor growth and progression in several ways. Specifically, the interaction of tumor-recruited Hyal2-expressing myeloid-derived suppressor cells (MDSCs) of bone marrow origin with HA-producing cancer-associated fibroblasts and epithelial tumor cells results in enhanced HA degradation and accumulation of small pro-inflammatory HA fragments, which further drives cancer-related inflammation. In addition, hyaluronan-enriched stroma supports the transition of tumor-recruited Hyal2MDSCs to the PD-L1 tumor-associated macrophages leading to the formation of an immunosuppressive and tolerogenic tumor microenvironment. In this review, we aim to discuss the contribution of tumor-associated HA to cancer inflammation, angiogenesis, and tumor-associated immune suppression. We also highlight the recent findings related to the enhanced HA degradation in the tumor microenvironment.

Keywords

References

  1. Semin Cancer Biol. 2008 Aug;18(4):244-50 [PMID: 18534864]
  2. Exp Cell Res. 2005 Oct 15;310(1):205-17 [PMID: 16125700]
  3. ACS Appl Bio Mater. 2021 Aug 16;4(8):6023-6035 [PMID: 35006866]
  4. Matrix Biol. 2007 Jan;26(1):58-68 [PMID: 17055233]
  5. J Biol Chem. 2021 Nov;297(5):101281 [PMID: 34624311]
  6. Cancer Res. 2012 Jan 15;72(2):537-47 [PMID: 22113945]
  7. J Biol Chem. 2015 Dec 25;290(52):30910-23 [PMID: 26518873]
  8. J Immunol. 1998 Mar 15;160(6):3023-30 [PMID: 9510207]
  9. J Immunol. 1997 Sep 1;159(5):2492-500 [PMID: 9278343]
  10. J Biol Chem. 2000 Sep 8;275(36):27641-9 [PMID: 10882722]
  11. Matrix Biol. 2001 Dec;20(8):499-508 [PMID: 11731267]
  12. Clin Cancer Res. 2009 Dec 15;15(24):7593-7601 [PMID: 19996211]
  13. J Biol Chem. 2004 Apr 23;279(17):17079-84 [PMID: 14764599]
  14. Eur J Cell Biol. 2004 Aug;83(7):317-25 [PMID: 15503855]
  15. Histopathology. 2014 Sep;65(3):328-39 [PMID: 24527698]
  16. Curr Biol. 2013 Apr 22;23(8):703-9 [PMID: 23562267]
  17. Cancer Res. 2021 Feb 1;81(3):648-657 [PMID: 33239427]
  18. Am J Physiol Lung Cell Mol Physiol. 2000 Oct;279(4):L707-15 [PMID: 11000131]
  19. J Clin Invest. 1996 Nov 15;98(10):2403-13 [PMID: 8941660]
  20. Clin Cancer Res. 1998 Mar;4(3):567-76 [PMID: 9533523]
  21. Cancer Res. 2003 May 15;63(10):2638-44 [PMID: 12750291]
  22. Biochimie. 2010 Feb;92(2):204-15 [PMID: 19879319]
  23. Genomics. 1999 Sep 15;60(3):356-61 [PMID: 10493834]
  24. Histopathology. 2015 May;66(6):873-83 [PMID: 25387851]
  25. Life Sci. 2007 May 1;80(21):1921-43 [PMID: 17408700]
  26. J Biol Chem. 2003 Aug 22;278(34):32259-65 [PMID: 12801931]
  27. Nat Med. 2005 Nov;11(11):1173-9 [PMID: 16244651]
  28. Am J Respir Cell Mol Biol. 2010 Jun;42(6):753-61 [PMID: 19675307]
  29. Proc Natl Acad Sci U S A. 1993 May 1;90(9):4003-7 [PMID: 8483916]
  30. J Biol Chem. 2002 Feb 15;277(7):4589-92 [PMID: 11717317]
  31. Cancers (Basel). 2020 May 22;12(5): [PMID: 32455980]
  32. Hum Pathol. 2015 Nov;46(11):1573-81 [PMID: 26351067]
  33. Nat Rev Cancer. 2004 Jul;4(7):528-39 [PMID: 15229478]
  34. Cancer Res. 2016 May 1;76(9):2507-12 [PMID: 27197262]
  35. J Biol Chem. 2007 Feb 23;282(8):5597-607 [PMID: 17170110]
  36. Nat Rev Immunol. 2015 Nov;15(11):669-82 [PMID: 26471778]
  37. Physiol Rev. 2011 Jan;91(1):221-64 [PMID: 21248167]
  38. Semin Cancer Biol. 2008 Aug;18(4):275-80 [PMID: 18485730]
  39. ACS Biomater Sci Eng. 2015 Jul 13;1(7):481-493 [PMID: 26280020]
  40. Glycobiology. 2003 Dec;13(12):105R-115R [PMID: 14514708]
  41. J Biol Chem. 2014 Feb 14;289(7):4470-88 [PMID: 24366870]
  42. J Exp Med. 2002 Jan 7;195(1):99-111 [PMID: 11781369]
  43. Biochim Biophys Acta. 2011 Sep;1812(9):1170-81 [PMID: 21723389]
  44. Cytoskeleton (Hoboken). 2011 Dec;68(12):671-93 [PMID: 22031535]
  45. J Immunol. 2022 Jun 15;208(12):2829-2836 [PMID: 35589125]
  46. Nature. 2013 Jul 18;499(7458):346-9 [PMID: 23783513]
  47. J Immunol. 2000 Aug 15;165(4):1863-70 [PMID: 10925265]
  48. Biomater Res. 2021 Aug 30;25(1):27 [PMID: 34462017]
  49. J Kidney Cancer VHL. 2022 Apr 16;9(2):1-6 [PMID: 35528727]
  50. Int J Cancer. 2007 Apr 15;120(8):1712-20 [PMID: 17230515]
  51. FEBS J. 2019 Aug;286(15):2937-2949 [PMID: 30974514]
  52. Science. 1985 Jun 14;228(4705):1324-6 [PMID: 2408340]
  53. Cancer. 2014 Jun 15;120(12):1800-9 [PMID: 24668563]
  54. Nature. 2008 Jul 24;454(7203):436-44 [PMID: 18650914]
  55. Nat Rev Cancer. 2020 Mar;20(3):174-186 [PMID: 31980749]
  56. Eur J Cancer. 2001 May;37(7):849-56 [PMID: 11313172]
  57. Br J Cancer. 2014 Jul 29;111(3):559-67 [PMID: 24937668]
  58. Cancer Lett. 2016 May 28;375(1):20-30 [PMID: 26921785]
  59. Science. 2010 Nov 5;330(6005):827-30 [PMID: 21051638]
  60. Nat Rev Cancer. 2016 Aug 23;16(9):582-98 [PMID: 27550820]
  61. Cancer. 2011 Mar 15;117(6):1197-209 [PMID: 20960509]
  62. J Immunol. 1999 Apr 1;162(7):4171-6 [PMID: 10201943]
  63. Front Immunol. 2019 May 10;10:947 [PMID: 31134064]
  64. J Biol Chem. 2007 Jun 22;282(25):18265-18275 [PMID: 17400552]
  65. Medicine (Baltimore). 2020 May 29;99(22):e20438 [PMID: 32481447]
  66. Cancer Metastasis Rev. 2014 Dec;33(4):1059-79 [PMID: 25324146]
  67. Cancer. 2002 Jul 1;95(1):61-72 [PMID: 12115318]
  68. Cell Death Dis. 2013 Oct 03;4:e819 [PMID: 24091662]
  69. Dev Cell. 2019 May 20;49(4):590-604.e9 [PMID: 31080060]
  70. Cancer Immunol Res. 2020 Apr;8(4):436-450 [PMID: 32075803]
  71. Biomolecules. 2021 Oct 20;11(11): [PMID: 34827550]
  72. Int J Cancer. 2007 Jun 15;120(12):2557-67 [PMID: 17315194]
  73. Sci Rep. 2021 Jun 9;11(1):12216 [PMID: 34108626]
  74. FASEB J. 2015 Apr;29(4):1290-8 [PMID: 25550464]
  75. Cancers (Basel). 2011 Sep 28;3(4):3740-61 [PMID: 24213109]
  76. Carbohydr Polym. 2017 Feb 10;157:21-30 [PMID: 27987920]
  77. Front Immunol. 2021 Aug 27;12:749605 [PMID: 34512674]
  78. Nat Rev Immunol. 2012 Mar 22;12(4):253-68 [PMID: 22437938]
  79. Cancer Res. 2010 Sep 15;70(18):7073-83 [PMID: 20823158]

MeSH Term

B7-H1 Antigen
Humans
Hyaluronic Acid
Inflammation
Neoplasms
Tumor Microenvironment

Chemicals

B7-H1 Antigen
Hyaluronic Acid

Word Cloud

Created with Highcharts 10.0.0HAtumortumor-associatedcellscancermetabolismdegradationimmuneinflammationmicroenvironmentenhancedsuppressionsolidcancersincreasedproductioncellulargrowthlevelsstromatumor-recruiteddrivesPD-L1macrophageshyaluronanHyaluronanknownprominentcomponentextracellularmatrixtumorsmanycharacterizedaberrantresultingtissueimplicatedregulatingvarietyfunctionsstromalsuggestingalteredcaninfluencemalignancymultipleImportantlyassociatedduehighexpressionactivityhyaluronidasesHyalUnderstandingcomplexmolecularmechanismsinvolvedabnormalcatabolismimportantimplicationsdesignfuturetherapeuticapproachesappearsextensivecrosstalkHA-enrichedcontributesprogressionseveralwaysSpecificallyinteractionHyal2-expressingmyeloid-derivedsuppressorMDSCsbonemarroworiginHA-producingcancer-associatedfibroblastsepithelialresultsaccumulationsmallpro-inflammatoryfragmentscancer-relatedadditionhyaluronan-enrichedsupportstransitionHyal2MDSCsleadingformationimmunosuppressivetolerogenicreviewaimdiscusscontributionangiogenesisalsohighlightrecentfindingsrelatedDeregulatedHYAL2MDSC

Similar Articles

Cited By