Multivariate Longitudinal Modeling of Macular Ganglion Cell Complex: Spatiotemporal Correlations and Patterns of Longitudinal Change.

Vahid Mohammadzadeh, Erica Su, Lynn Shi, Anne L Coleman, Simon K Law, Joseph Caprioli, Robert E Weiss, Kouros Nouri-Mahdavi
Author Information
  1. Vahid Mohammadzadeh: Glaucoma Division, Stein Eye Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California.
  2. Erica Su: Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, California.
  3. Lynn Shi: Glaucoma Division, Stein Eye Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California.
  4. Anne L Coleman: Glaucoma Division, Stein Eye Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California.
  5. Simon K Law: Glaucoma Division, Stein Eye Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California.
  6. Joseph Caprioli: Glaucoma Division, Stein Eye Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California.
  7. Robert E Weiss: Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, California.
  8. Kouros Nouri-Mahdavi: Glaucoma Division, Stein Eye Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California.

Abstract

Purpose: To investigate spatiotemporal correlations among ganglion cell complex (GCC) superpixel thickness measurements and explore underlying patterns of longitudinal change across the macular region.
Design: Longitudinal cohort study.
Subjects: One hundred eleven eyes from 111 subjects from the Advanced Glaucoma Progression Study with ≥ 4 visits and ≥ 2 years of follow-up.
Methods: We further developed our proposed Bayesian hierarchical model for studying longitudinal GCC thickness changes across macular superpixels in a cohort of glaucoma patients. Global priors were introduced for macular superpixel parameters to combine data across superpixels and better estimate population slopes and intercepts.
Main Outcome Measures: Bayesian residual analysis to inspect cross-superpixel correlations for subject random effects and residuals. Principal component analysis (PCA) to explore underlying patterns of longitudinal macular change.
Results: Average (standard deviation [SD]) follow-up and baseline 10-2 visual field mean deviation were 3.6 (0.4) years and -8.9 (5.9) dB, respectively. Superpixel-level random effects and residuals had the greatest correlations with nearest neighbors; correlations were higher in the superior than in the inferior region and strongest among random intercepts, followed by random slopes, residuals, and residual SDs. PCA of random intercepts showed a first large principal component (PC) across superpixels that approximated a global intercept, a second PC that contrasted the superior and inferior macula, and a third PC, contrasting inner and nasal superpixels with temporal and peripheral superpixels. PCs for slopes, residual SDs, and residuals were remarkably similar to those of random intercepts.
Conclusions: Introduction of cross-superpixel random intercepts and slopes is expected to improve estimation of population and subject parameters. Further model enhancement may be possible by including cross-superpixel random effects and correlations to address spatiotemporal relationships in longitudinal data sets.

Keywords

References

  1. Stat Med. 2017 May 20;36(11):1735-1753 [PMID: 28152571]
  2. J Clin Invest. 2011 Apr;121(4):1429-44 [PMID: 21383504]
  3. Invest Ophthalmol Vis Sci. 2014 Jan 29;55(1):612-24 [PMID: 24408977]
  4. Transl Vis Sci Technol. 2018 Feb 28;7(1):20 [PMID: 29497582]
  5. Invest Ophthalmol Vis Sci. 2017 Aug 1;58(10):4310–4317 [PMID: 28800651]
  6. Ophthalmology. 2019 Aug;126(8):1131-1139 [PMID: 30576683]
  7. J Glaucoma. 2014 Apr-May;23(4):195-8 [PMID: 22922666]
  8. Ophthalmology. 2020 Jul;127(7):888-900 [PMID: 32173112]
  9. Ophthalmology. 2012 Feb;119(2):308-13 [PMID: 22182800]
  10. J Glaucoma. 2017 Mar;26(3):208-215 [PMID: 27811573]
  11. Arch Ophthalmol. 2003 Jan;121(1):41-6 [PMID: 12523883]
  12. Invest Ophthalmol Vis Sci. 2012 Apr 30;53(4):2390-4 [PMID: 22427560]
  13. Stat Med. 1992 Jan 15;11(1):115-24 [PMID: 1557567]
  14. J Ophthalmol. 2018 Oct 08;2018:6581846 [PMID: 30402278]
  15. Am J Ophthalmol. 2021 Jun;226:172-181 [PMID: 33529590]
  16. Am J Ophthalmol. 2017 Mar;175:37-44 [PMID: 27914978]
  17. J Am Stat Assoc. 2019;114(527):1063-1074 [PMID: 31662589]
  18. Invest Ophthalmol Vis Sci. 2013 Mar 15;54(3):1941-9 [PMID: 23422822]
  19. Surv Ophthalmol. 2020 Nov - Dec;65(6):597-638 [PMID: 32199939]
  20. Transl Vis Sci Technol. 2021 Apr 1;10(4):15 [PMID: 34003991]
  21. Ophthalmology. 2017 Dec;124(12S):S57-S65 [PMID: 29157363]
  22. Transl Vis Sci Technol. 2020 Jun 30;9(7):50 [PMID: 32832255]
  23. Invest Ophthalmol Vis Sci. 2012 Jun 20;53(7):3817-26 [PMID: 22562510]
  24. Invest Ophthalmol Vis Sci. 2009 Dec;50(12):5741-8 [PMID: 19815731]
  25. Am J Ophthalmol. 1989 May 15;107(5):453-64 [PMID: 2712129]
  26. J Glaucoma. 2018 Nov;27(11):993-998 [PMID: 30180019]
  27. Am J Ophthalmol. 2010 Feb;149(2):187-188.e1 [PMID: 20103051]
  28. Am J Ophthalmol. 2017 Jun;178:38-50 [PMID: 28315655]
  29. Invest Ophthalmol Vis Sci. 2017 Aug 1;58(10):4211-4217 [PMID: 28837723]
  30. Transl Vis Sci Technol. 2016 Jul 19;5(4):5 [PMID: 27486555]
  31. Invest Ophthalmol Vis Sci. 2016 Jun 1;57(7):3203-10 [PMID: 27309624]
  32. PLoS One. 2014 Jun 20;9(6):e98525 [PMID: 24950300]
  33. Invest Ophthalmol Vis Sci. 2013 Sep 27;54(9):6401-8 [PMID: 23989192]

Grants

  1. R01 EY029792/NEI NIH HHS

Word Cloud

Created with Highcharts 10.0.0randomcorrelationssuperpixelsinterceptslongitudinalacrossmacularLongitudinalslopesresidualsPCcellcomplexGCCBayesianresidualcross-superpixeleffectscomponentdeviationspatiotemporalamongganglionsuperpixelexploreunderlyingpatternschangeregioncohort4yearsfollow-upmodelparametersdatapopulationanalysissubjectPCAstandardvisualfield9superiorinferiorSDsprincipalMacularGanglionPurpose:investigatethickness measurementsDesign:studySubjects:Onehundredeleveneyes111subjectsAdvancedGlaucomaProgressionStudyvisits2Methods:developedproposedhierarchicalstudyingthicknesschangesglaucomapatientsGlobalpriorsintroducedcombinebetterestimateMainOutcomeMeasures:inspectPrincipalResults:Average[SD]baseline10-2mean30and -85dBrespectivelySuperpixel-levelgreatestnearestneighborshigherstrongestfollowedshowedfirstlargeapproximatedglobalinterceptsecondcontrastedmaculathirdcontrastinginnernasaltemporalperipheralPCsremarkablysimilarConclusions:Introductionexpectedimproveestimation ofenhancementmaypossibleincludingaddressrelationshipssetsMultivariateModelingCellComplex:SpatiotemporalCorrelationsPatternsChangeHierarchicalOCTRNFLretinalnervefiberlayerSDVF

Similar Articles

Cited By (4)