Tripartite Symbiotic Digestion of Lignocellulose in the Digestive System of a Fungus-Growing Termite.

Farhan Ahmad, Guiying Yang, Yaning Zhu, Michael Poulsen, Wuhan Li, Ting Yu, Jianchu Mo
Author Information
  1. Farhan Ahmad: Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang Universitygrid.13402.34, Zhejiang, People's Republic of China. ORCID
  2. Guiying Yang: Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang Universitygrid.13402.34, Zhejiang, People's Republic of China.
  3. Yaning Zhu: Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang Universitygrid.13402.34, Zhejiang, People's Republic of China.
  4. Michael Poulsen: Section for Ecology and Evolution, Department of Biology, University of Copenhagengrid.5254.6, Copenhagen East, Denmark. ORCID
  5. Wuhan Li: Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang Universitygrid.13402.34, Zhejiang, People's Republic of China.
  6. Ting Yu: Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang Universitygrid.13402.34, Zhejiang, People's Republic of China.
  7. Jianchu Mo: Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang Universitygrid.13402.34, Zhejiang, People's Republic of China. ORCID

Abstract

Fungus-growing termites are efficient in degrading and digesting plant substrates, achieved through the engagement of symbiotic gut microbiota and lignocellulolytic fungi cultivated for protein-rich food. Insights into where specific plant biomass components are targeted during the decomposition process are sparse. In this study, we performed several analytical approaches on the fate of plant biomass components and did amplicon sequencing of the 16S rRNA gene to investigate the lignocellulose digestion in the symbiotic system of the fungus-growing termite Odontotermes formosanus (Shiraki) and to compare bacterial communities across the different stages in the degradation process. We observed a gradual reduction of lignocellulose components throughout the process. Our findings support that the digestive tract of young workers initiates the degradation of lignocellulose but leaves most of the lignin, hemicellulose, and cellulose, which enters the fresh fungus comb, where decomposition primarily occurs. We found a high diversity and quantity of monomeric sugars in older parts of the fungus comb, indicating that the decomposition of lignocellulose enriches the old comb with sugars that can be utilized by and termite workers. Amplicon sequencing of the 16S rRNA gene showed clear differences in community composition associated with the different stages of plant biomass decomposition which could work synergistically with to shape the digestion process. Fungus-farming termites have a mutualist association with fungi of the genus and gut microbiota to support the nearly complete decomposition of lignocellulose to gain access to nutrients. This elaborate strategy of plant biomass digestion makes them ecologically successful dominant decomposers in (sub)tropical Old World ecosystems. We employed acid detergent fiber analysis, high-performance anion-exchange chromatography (HPAEC), high-performance liquid chromatography (HPLC), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), pyrolysis gas chromatography-mass spectrometry (Py-GC-MS), and amplicon sequencing of the 16S rRNA gene to examine which lignocellulose components were digested and which bacteria were abundant throughout the decomposition process. Our findings suggest that although the first gut passage initiates lignocellulose digestion, the most prominent decomposition occurs within the fungus comb. Moreover, distinct bacterial communities were associated with different stages of decomposition, potentially contributing to the breakdown of particular plant components.

Keywords

References

  1. Appl Environ Microbiol. 2018 Feb 14;84(5): [PMID: 29269491]
  2. Curr Opin Biotechnol. 2016 Apr;38:190-7 [PMID: 27011055]
  3. Appl Environ Microbiol. 2009 Dec;75(23):7537-41 [PMID: 19801464]
  4. Nat Microbiol. 2016 Oct 31;2:16198 [PMID: 27798560]
  5. Science. 2015 Feb 6;347(6222):651-5 [PMID: 25657247]
  6. Environ Microbiol Rep. 2019 Apr;11(2):196-205 [PMID: 30556304]
  7. Nature. 2007 Nov 22;450(7169):560-5 [PMID: 18033299]
  8. Appl Environ Microbiol. 2014 Apr;80(7):2261-9 [PMID: 24487532]
  9. Bioresour Technol. 2016 Jan;200:1008-18 [PMID: 26614225]
  10. Nat Rev Microbiol. 2014 Mar;12(3):168-80 [PMID: 24487819]
  11. PLoS One. 2013;8(2):e56464 [PMID: 23437139]
  12. Microb Ecol. 2016 Jan;71(1):207-20 [PMID: 26518432]
  13. J Integr Plant Biol. 2017 Jun;59(6):390-408 [PMID: 28206710]
  14. Nucleic Acids Res. 2002 Jul 15;30(14):3059-66 [PMID: 12136088]
  15. Mol Ecol. 2006 Feb;15(2):505-16 [PMID: 16448416]
  16. BMC Microbiol. 2019 Jul 17;19(1):164 [PMID: 31315576]
  17. Microb Ecol. 2014 Aug;68(2):416-25 [PMID: 24584416]
  18. Insects. 2020 Aug 13;11(8): [PMID: 32823564]
  19. Proc Natl Acad Sci U S A. 2019 Dec 3;116(49):24729-24737 [PMID: 31740605]
  20. Biotechnol Adv. 2013 Nov;31(6):838-50 [PMID: 23623853]
  21. Springerplus. 2015 Sep 02;4:471 [PMID: 26355944]
  22. Curr Biol. 2018 Feb 19;28(4):649-654.e2 [PMID: 29429621]
  23. Bioinformatics. 2010 Oct 1;26(19):2460-1 [PMID: 20709691]
  24. Mol Ecol. 2016 Nov;25(22):5795-5805 [PMID: 27696597]
  25. Microb Ecol. 2012 May;63(4):975-85 [PMID: 22173371]
  26. Nucleic Acids Res. 2013 Jan;41(Database issue):D590-6 [PMID: 23193283]
  27. Annu Rev Entomol. 2021 Jan 7;66:297-316 [PMID: 32926791]
  28. mSphere. 2021 Mar 3;6(2): [PMID: 33658277]
  29. Food Chem. 2018 Oct 15;263:29-36 [PMID: 29784319]
  30. Bioresour Technol. 2013 Oct;145:337-44 [PMID: 23298769]
  31. Science. 2015 Feb 6;347(6222):596-7 [PMID: 25657224]
  32. Oecologia. 1981 Jan;51(3):379-384 [PMID: 28310023]
  33. mBio. 2014 Nov 18;5(6):e02077 [PMID: 25406380]
  34. mBio. 2021 Jun 29;12(3):e0355120 [PMID: 34126770]
  35. J Basic Microbiol. 2012 Dec;52(6):731-5 [PMID: 22359219]
  36. Front Microbiol. 2016 Dec 15;7:1993 [PMID: 28018322]
  37. Genome Biol. 2011 Jun 24;12(6):R60 [PMID: 21702898]
  38. PLoS One. 2020 May 1;15(5):e0232329 [PMID: 32357167]
  39. Mol Ecol. 2014 Mar;23(6):1531-1543 [PMID: 24261591]
  40. Bioresour Technol. 2017 Oct;241:415-423 [PMID: 28582764]
  41. Appl Environ Microbiol. 1999 Nov;65(11):4926-34 [PMID: 10543805]
  42. Appl Microbiol Biotechnol. 2020 Dec;104(24):10369-10387 [PMID: 33128616]
  43. Proc Natl Acad Sci U S A. 2017 May 2;114(18):4709-4714 [PMID: 28424249]
  44. Appl Environ Microbiol. 2011 Jan;77(1):48-56 [PMID: 21057022]
  45. Appl Microbiol Biotechnol. 2003 Mar;61(1):1-9 [PMID: 12658509]
  46. BMC Microbiol. 2009 Dec 15;9:259 [PMID: 20003481]
  47. Appl Environ Microbiol. 2007 Oct;73(19):6270-6 [PMID: 17675420]
  48. Microbiome. 2018 May 17;6(1):90 [PMID: 29773078]
  49. mSphere. 2019 May 15;4(3): [PMID: 31092601]
  50. Bioresour Technol. 2013 Feb;130:30-7 [PMID: 23298647]
  51. Proc Natl Acad Sci U S A. 2018 Dec 18;115(51):E11996-E12004 [PMID: 30504145]
  52. ISME J. 2009 Mar;3(3):326-39 [PMID: 18971963]
  53. Biotechnol Biofuels. 2013 May 14;6(1):78 [PMID: 23672637]
  54. Front Microbiol. 2021 Jan 15;11:581219 [PMID: 33519727]
  55. Environ Microbiol. 2021 Aug;23(8):4092-4097 [PMID: 34097340]
  56. Mol Ecol. 2014 Sep;23(18):4631-44 [PMID: 25066007]
  57. Biol Lett. 2006 Jun 22;2(2):209-12 [PMID: 17148364]
  58. Nat Methods. 2010 May;7(5):335-6 [PMID: 20383131]
  59. Insect Sci. 2021 Dec;28(6):1512-1529 [PMID: 33236502]
  60. Proc Natl Acad Sci U S A. 2014 Oct 7;111(40):14500-5 [PMID: 25246537]
  61. Front Chem. 2019 Dec 18;7:874 [PMID: 31921787]
  62. Environ Microbiol. 2016 May;18(5):1440-51 [PMID: 26346907]
  63. Science. 2009 Nov 20;326(5956):1103-6 [PMID: 19965427]
  64. Antibiotics (Basel). 2018 Sep 13;7(3): [PMID: 30217010]
  65. Biotechnol Biofuels. 2019 Apr 01;12:70 [PMID: 30976320]
  66. Science. 1992 Sep 4;257(5075):1384-7 [PMID: 17738281]
  67. Syst Appl Microbiol. 2016 Jul;39(5):319-29 [PMID: 27270136]
  68. Mol Biol Evol. 2009 Jul;26(7):1641-50 [PMID: 19377059]
  69. Nat Biotechnol. 2019 Aug;37(8):852-857 [PMID: 31341288]
  70. Bioinformatics. 2011 Aug 15;27(16):2194-200 [PMID: 21700674]

MeSH Term

Animals
Lignin
Isoptera
Ecosystem
RNA, Ribosomal, 16S
Bacteria
Fungi
Symbiosis
Digestive System
Sugars
Digestion

Chemicals

lignocellulose
Lignin
RNA, Ribosomal, 16S
Sugars

Word Cloud

Created with Highcharts 10.0.0decompositionlignocelluloseplantcomponentsprocessbiomassdigestioncombgutsequencing16SrRNAgenedifferentstagesfungustermitessymbioticmicrobiotafungiamplicontermiteOdontotermesformosanusbacterialcommunitiesdegradationthroughoutfindingssupportworkersinitiatesoccurssugarsassociatedhigh-performancechromatographybacteriaFungus-growingefficientdegradingdigestingsubstratesachievedengagementlignocellulolyticcultivatedprotein-richfoodInsightsspecifictargetedsparsestudyperformedseveralanalyticalapproachesfateinvestigatesystemfungus-growingShirakicompareacrossobservedgradualreductiondigestivetractyoungleavesligninhemicellulosecelluloseentersfreshprimarilyfoundhighdiversityquantitymonomericolderpartsindicatingenrichesoldcanutilizedAmpliconshowedcleardifferencescommunitycompositionworksynergisticallyshapeFungus-farmingmutualistassociationgenusnearlycompletegainaccessnutrientselaboratestrategymakesecologicallysuccessfuldominantdecomposerssubtropicalOldWorldecosystemsemployedaciddetergentfiberanalysisanion-exchangeHPAECliquidHPLCscanningelectronmicroscopySEMFouriertransforminfraredspectroscopyFTIRX-raydiffractionXRDpyrolysisgaschromatography-massspectrometryPy-GC-MSexaminedigestedabundantsuggestalthoughfirstpassageprominentwithinMoreoverdistinctpotentiallycontributingbreakdownparticularTripartiteSymbioticDigestionLignocelluloseDigestiveSystemFungus-GrowingTermiteTermitomycesbioconversionsymbiosis

Similar Articles

Cited By