Reticular Pseudodrusen Are Associated With More Advanced Para-Central Photoreceptor Degeneration in Intermediate Age-Related Macular Degeneration.

Matt Trinh, Natalie Eshow, David Alonso-Caneiro, Michael Kalloniatis, Lisa Nivison-Smith
Author Information
  1. Matt Trinh: Centre for Eye Health, University of New South Wales, Sydney, New South Wales, Australia.
  2. Natalie Eshow: Centre for Eye Health, University of New South Wales, Sydney, New South Wales, Australia.
  3. David Alonso-Caneiro: Contact Lens and Visual Optics Laboratory, Queensland University of Technology, Brisbane, Queensland, Australia.
  4. Michael Kalloniatis: Centre for Eye Health, University of New South Wales, Sydney, New South Wales, Australia.
  5. Lisa Nivison-Smith: Centre for Eye Health, University of New South Wales, Sydney, New South Wales, Australia.

Abstract

Purpose: The purpose of this study was to examine retinal topographical differences between intermediate Age-Related Macular Degeneration (iAMD) with reticular pseudodrusen (RPD) versus iAMD without RPD, using high-density optical coherence tomography (OCT) cluster analysis.
Methods: Single eyes from 153 individuals (51 with iAMD+RPD, 51 with iAMD, and 51 healthy) were propensity-score matched by age, sex, and refraction. High-density OCT grid-wise (60 × 60 grids, each approximately 0.01 mm2 area) thicknesses were custom-extracted from macular cube scans, then compared between iAMD+RPD and iAMD eyes with correction for confounding factors. These "differences (µm)" were clustered and results de-convoluted to reveal mean difference (95% confidence interval [CI]) and topography of the inner retina (retinal nerve fiber, ganglion cell, inner plexiform, and inner nuclear layers) and outer retina (outer plexiform/Henle's fiber/outer nuclear layers, inner and outer segments, and retinal pigment epithelium-to-Bruch's membrane [RPE-BM]). Differences were also converted to Z-scores using normal data.
Results: In iAMD+RPD compared to iAMD eyes, the inner retina was thicker (up to +5.89 [95% CI = +2.44 to +9.35] µm, P < 0.0001 to 0.05), the outer para-central retina was thinner (up to -3.21 [95% CI = -5.39 to -1.03] µm, P < 0.01 to 0.001), and the RPE-BM was thicker (+3.38 [95% CI = +1.05 to +5.71] µm, P < 0.05). The majority of effect sizes (Z-scores) were large (-3.13 to +1.91).
Conclusions: OCT retinal topography differed across all retinal layers between iAMD eyes with versus without RPD. Greater para-central photoreceptor thinning in RPD eyes was suggestive of more advanced Degeneration, whereas the significance of inner retinal thickening was unclear. In the future, quantitative evaluation of photoreceptor thicknesses may help clinicians monitor the potential deleterious effects of RPD on retinal integrity.

References

  1. Invest Ophthalmol Vis Sci. 2020 Jun 3;61(6):59 [PMID: 32602904]
  2. Methods Mol Biol. 2010;593:81-107 [PMID: 19957146]
  3. Sci Rep. 2020 Oct 28;10(1):18527 [PMID: 33116253]
  4. Invest Ophthalmol Vis Sci. 2013 Nov 08;54(12):7362-9 [PMID: 24114542]
  5. Eye (Lond). 2007 Jun;21(6):689-96 [PMID: 16680100]
  6. Retina. 2020 Apr;40(4):618-631 [PMID: 31599795]
  7. Neuroophthalmology. 2019 May 27;43(6):382-390 [PMID: 32165897]
  8. Invest Ophthalmol Vis Sci. 2013 Oct 29;54(10):7075-81 [PMID: 24071958]
  9. Lasers Surg Med. 2012 Oct;44(8):603-10 [PMID: 22930575]
  10. Retina. 1994;14(1):65-74 [PMID: 8016466]
  11. Am J Ophthalmol. 2014 May;157(5):1005-12 [PMID: 24503406]
  12. Ophthalmology. 2017 Dec;124(12):1764-1777 [PMID: 28847641]
  13. Br J Ophthalmol. 2007 Mar;91(3):354-9 [PMID: 16973663]
  14. Ophthalmology. 2013 Apr;120(4):844-51 [PMID: 23332590]
  15. Cutan Ocul Toxicol. 2015;34(3):217-21 [PMID: 25198410]
  16. Invest Ophthalmol Vis Sci. 2019 Mar 1;60(4):1144-1155 [PMID: 30901772]
  17. Invest Ophthalmol Vis Sci. 2014 Mar 10;55(3):1427-31 [PMID: 24550363]
  18. Ophthalmic Surg Lasers Imaging Retina. 2018 Jun 1;49(6):402-408 [PMID: 29927467]
  19. Invest Ophthalmol Vis Sci. 2007 Jun;48(6):2782-91 [PMID: 17525213]
  20. Ophthalmology. 2022 Oct;129(10):1107-1119 [PMID: 35660417]
  21. Clin Ophthalmol. 2014 Dec 09;8:2507-22 [PMID: 25525329]
  22. Ophthalmology. 2016 Jun;123(6):1320-31 [PMID: 27039021]
  23. Graefes Arch Clin Exp Ophthalmol. 2016 Mar;254(3):427-35 [PMID: 25971212]
  24. Invest Ophthalmol Vis Sci. 2006 Dec;47(12):5495-504 [PMID: 17122141]
  25. Am J Ophthalmol. 2016 May;165:65-77 [PMID: 26940163]
  26. Ophthalmology. 2019 Dec;126(12):1667-1674 [PMID: 31281056]
  27. J Glaucoma. 1999 Jun;8(3):157-8 [PMID: 10376253]
  28. Am J Ophthalmol. 2022 Jul;239:202-211 [PMID: 35288077]
  29. Retina. 2014 Apr;34(4):761-7 [PMID: 24100709]
  30. Ophthalmology. 1996 Dec;103(12):2114-9 [PMID: 9003346]
  31. Invest Ophthalmol Vis Sci. 2012 Mar 09;53(3):1264-70 [PMID: 22266524]
  32. Indian J Dermatol. 2016 Jul-Aug;61(4):385-92 [PMID: 27512183]
  33. Ophthalmology. 2010 Sep;117(9):1775-81 [PMID: 20472293]
  34. Postgrad Med J. 2006 Sep;82(971):581-7 [PMID: 16954455]
  35. JAMA Ophthalmol. 2022 Mar 01;140(3):252-260 [PMID: 35113155]
  36. Acta Ophthalmol. 2022 May;100(3):e710-e718 [PMID: 34390191]
  37. J Ophthalmol. 2019 Sep 29;2019:8079127 [PMID: 31662897]
  38. Acta Ophthalmol. 2022 Feb;100(1):e150-e156 [PMID: 33884766]
  39. Ophthalmology. 2015 Oct;122(10):2053-62 [PMID: 26253372]
  40. Invest Ophthalmol Vis Sci. 2020 Aug 3;61(10):19 [PMID: 32780863]
  41. Retina. 2019 May;39(5):906-917 [PMID: 29370035]
  42. Eye (Lond). 1998;12 ( Pt 3b):531-40 [PMID: 9775214]
  43. Retina. 2020 Apr;40(4):612-617 [PMID: 31634322]
  44. Invest Ophthalmol Vis Sci. 2021 Apr 1;62(4):2 [PMID: 33792619]
  45. Int J Retina Vitreous. 2020 Feb 14;6:4 [PMID: 32082615]
  46. Sci Rep. 2020 Dec 3;10(1):21093 [PMID: 33273512]
  47. Retina. 2020 Apr;40(4):686-694 [PMID: 30950969]
  48. Eur J Ophthalmol. 2021 Mar;31(2):505-513 [PMID: 32338527]
  49. Invest Ophthalmol Vis Sci. 2021 Oct 4;62(13):13 [PMID: 34661608]
  50. Acta Ophthalmol. 2019 Dec;97(8):735-743 [PMID: 31386806]
  51. Transl Vis Sci Technol. 2021 Oct 4;10(12):26 [PMID: 34665234]
  52. Am J Ophthalmol. 2000 Feb;129(2):215-23 [PMID: 10682975]
  53. Ophthalmology. 2014 Sep;121(9):1748-55 [PMID: 24856310]
  54. J Vasc Surg. 2002 Jul;36(1):194-5 [PMID: 12096281]
  55. Ophthalmology. 2014 Jun;121(6):1252-6 [PMID: 24518615]
  56. Eye (Lond). 2017 Jun;31(6):872-877 [PMID: 28186508]
  57. Am J Ophthalmol. 2008 May;145(5):894-901 [PMID: 18294608]
  58. Retina. 2019 Oct;39(10):1945-1952 [PMID: 30048384]
  59. Invest Ophthalmol Vis Sci. 2022 Jun 1;63(6):23 [PMID: 35749129]
  60. Ophthalmol Retina. 2020 Jan;4(1):31-40 [PMID: 31649003]
  61. BMC Ophthalmol. 2018 Jul 28;18(1):184 [PMID: 30055588]
  62. Photodiagnosis Photodyn Ther. 2021 Dec;36:102549 [PMID: 34562645]
  63. Adv Exp Med Biol. 2018;1085:3-5 [PMID: 30578474]
  64. Ophthalmology. 2018 Oct;125(10):1526-1536 [PMID: 29716786]
  65. Invest Ophthalmol Vis Sci. 2017 May 1;58(5):2810-2815 [PMID: 28564702]
  66. Adv Exp Med Biol. 2014;801:229-35 [PMID: 24664703]
  67. Ophthalmology. 2014 Apr;121(4):917-25 [PMID: 24332537]
  68. Am J Ophthalmol. 2009 Nov;148(5):733-743.e2 [PMID: 19878758]
  69. Sci Rep. 2021 Dec 1;11(1):23255 [PMID: 34853365]
  70. Diabetes Care. 2013 Sep;36(9):2690-6 [PMID: 23637354]
  71. Invest Ophthalmol Vis Sci. 2020 Mar 9;61(3):2 [PMID: 32150251]
  72. PLoS One. 2015 May 12;10(5):e0125919 [PMID: 25965421]
  73. Med Care. 1982 Sep;20(9):959-66 [PMID: 7121100]
  74. Ophthalmol Retina. 2021 Aug;5(8):743-749 [PMID: 33227563]
  75. Ophthalmology. 2022 Jul;129(7):752-764 [PMID: 35240203]
  76. Br J Ophthalmol. 2003 Sep;87(9):1159-66 [PMID: 12928288]
  77. Ophthalmic Physiol Opt. 2014 Sep;34(5):502-8 [PMID: 24697967]
  78. Prog Retin Eye Res. 2022 May;88:101017 [PMID: 34752916]
  79. J Insect Sci. 2003;3:34 [PMID: 15841249]
  80. Ophthalmology. 2019 Jun;126(6):829-838 [PMID: 30244144]
  81. Clin Ophthalmol. 2015 Jul 13;9:1275-84 [PMID: 26203217]
  82. Am J Epidemiol. 2014 Jan 15;179(2):226-35 [PMID: 24114655]
  83. Ophthalmol Retina. 2021 Aug;5(8):721-729 [PMID: 33387684]
  84. Retina. 1995;15(3):183-91 [PMID: 7569344]
  85. Graefes Arch Clin Exp Ophthalmol. 2021 Sep;259(9):2545-2557 [PMID: 33738626]
  86. JAMA. 2005 Jul 27;294(4):466-72 [PMID: 16046653]
  87. Cell Mol Life Sci. 2016 May;73(9):1765-86 [PMID: 26852158]
  88. Invest Ophthalmol Vis Sci. 2022 May 2;63(5):36 [PMID: 35622354]
  89. Am J Ophthalmol. 2008 Feb;145(2):317-326 [PMID: 18045568]
  90. Retina. 2013 Mar;33(3):490-7 [PMID: 23403515]
  91. J Comp Neurol. 1990 Feb 22;292(4):497-523 [PMID: 2324310]
  92. Sci Rep. 2021 Jan 12;11(1):558 [PMID: 33436715]
  93. PLoS One. 2016 Sep 26;11(9):e0162259 [PMID: 27669525]
  94. Ophthalmology. 2016 Mar;123(3):599-608 [PMID: 26681391]
  95. J Biophotonics. 2016 May;9(5):478-89 [PMID: 27159849]
  96. Exp Eye Res. 2008 Nov;87(5):402-8 [PMID: 18721807]
  97. Ophthalmology. 2010 Feb;117(2):303-12.e1 [PMID: 19815280]
  98. Cutan Ocul Toxicol. 2017 Dec;36(4):366-369 [PMID: 28277878]
  99. Stat Sci. 2010 Feb 1;25(1):1-21 [PMID: 20871802]
  100. J Glaucoma. 1999 Oct;8(5):342 [PMID: 10529936]
  101. JAMA Ophthalmol. 2020 Jul 1;138(7):740-747 [PMID: 32379287]
  102. Invest Ophthalmol Vis Sci. 1996 Jun;37(7):1236-49 [PMID: 8641827]
  103. Retina. 2020 Mar;40(3):421-427 [PMID: 30576299]
  104. Clin Exp Ophthalmol. 2000 Aug;28(4):268-73 [PMID: 11021555]
  105. Am J Ophthalmol. 2012 Mar;153(3):530-5 [PMID: 21996310]
  106. Clin Exp Optom. 2021 Sep;104(7):795-804 [PMID: 33689627]
  107. J Intern Med. 2014 Aug;276(2):140-53 [PMID: 24581182]
  108. Indian J Ophthalmol. 2014 Jun;62(6):719-20 [PMID: 25005202]
  109. J Am Optom Assoc. 1982 Feb;53(2):117-24 [PMID: 7069103]
  110. Br J Ophthalmol. 2014 Nov;98(11):1522-7 [PMID: 24985725]
  111. Retina. 2007 Nov-Dec;27(9):1292-9 [PMID: 18046240]
  112. Indian J Ophthalmol. 2015 May;63(5):427-31 [PMID: 26139805]
  113. Invest Ophthalmol Vis Sci. 2021 Jul 1;62(9):22 [PMID: 34259817]
  114. J Ophthalmic Vis Res. 2021 Jul 29;16(3):384-392 [PMID: 34394867]
  115. Acta Ophthalmol. 2016 Feb;94(1):e49-53 [PMID: 25981599]
  116. PLoS One. 2019 Aug 16;14(8):e0220063 [PMID: 31419240]
  117. Ophthalmology. 2014 Feb;121(2):545-51 [PMID: 24183341]
  118. Ophthalmology. 2011 Aug;118(8):1619-25 [PMID: 21550118]
  119. Eye (Lond). 2017 Mar;31(3):364-371 [PMID: 27768118]
  120. Ophthalmic Res. 2018;59(4):212-220 [PMID: 29237169]
  121. Clin Exp Optom. 2019 Nov;102(6):601-610 [PMID: 30883919]
  122. Ophthalmology. 2019 Dec;126(12):1659-1666 [PMID: 31558345]
  123. Invest Ophthalmol Vis Sci. 2003 Oct;44(10):4481-8 [PMID: 14507896]
  124. Front Aging Neurosci. 2019 Oct 22;11:286 [PMID: 31695606]
  125. Ophthalmology. 2016 Jul;123(7):1530-40 [PMID: 27040149]
  126. Retina. 2013 Feb;33(2):265-76 [PMID: 23266879]
  127. PLoS One. 2013 Dec 31;8(12):e83759 [PMID: 24391822]
  128. Br J Ophthalmol. 1974 Aug;58(8):709-14 [PMID: 4433482]
  129. J Comp Neurol. 2013 Aug 1;521(11):2439-53 [PMID: 23348616]
  130. J Comp Neurol. 1990 Oct 1;300(1):5-25 [PMID: 2229487]
  131. Retina. 2013 Jul-Aug;33(7):1448-55 [PMID: 23538575]
  132. Eur J Ophthalmol. 2022 Jan;32(1):460-467 [PMID: 33506710]
  133. Invest Ophthalmol Vis Sci. 2016 Jun 1;57(7):3058-65 [PMID: 27367498]
  134. Invest Ophthalmol Vis Sci. 2019 Jul 1;60(8):2848-2859 [PMID: 31260035]
  135. Invest Ophthalmol Vis Sci. 2011 Mar 18;52(3):1486-92 [PMID: 21071737]
  136. JAMA. 2022 Jun 7;327(21):2123-2128 [PMID: 35608838]
  137. Ophthalmology. 2016 Feb;123(2):344-351 [PMID: 26522707]
  138. Front Neurosci. 2020 Dec 18;14:618019 [PMID: 33390897]
  139. JAMA Ophthalmol. 2019 Jul 1;137(7):738-744 [PMID: 31021381]
  140. Invest Ophthalmol Vis Sci. 2013 Nov 15;54(12):7498-509 [PMID: 24135755]
  141. Ophthalmic Surg Lasers Imaging. 2010 Nov-Dec;41 Suppl:S104-8 [PMID: 21117594]
  142. Ophthalmol Retina. 2019 Feb;3(2):112-121 [PMID: 31014758]

MeSH Term

Humans
Macular Degeneration
Retina
Retinal Drusen
Retinal Pigment Epithelium
Tomography, Optical Coherence

Word Cloud

Created with Highcharts 10.0.0retinaliAMD0innerRPDeyesretinaouterOCT51iAMD+RPDlayers[95%CI=P<05maculardegenerationversuswithoutusing60thicknessescomparedtopographynuclearZ-scoresthicker+5para-central-3+1photoreceptorDegenerationPurpose:purposestudyexaminetopographicaldifferencesintermediateage-relatedreticularpseudodrusenhigh-densityopticalcoherencetomographyclusteranalysisMethods:Single153individualshealthypropensity-scorematchedagesexrefractionHigh-densitygrid-wise×gridsapproximately01 mm2areacustom-extractedcubescanscorrectionconfoundingfactors"differencesµm"clusteredresultsde-convolutedrevealmeandifference95%confidenceinterval[CI]nervefiberganglioncellplexiformplexiform/Henle'sfiber/outersegmentspigmentepithelium-to-Bruch'smembrane[RPE-BM]DifferencesalsoconvertednormaldataResults:89+244+935] µm0001thinner21-539-103] µm01001RPE-BM+33871] µmmajorityeffectsizeslarge1391Conclusions:differedacrossGreaterthinningsuggestiveadvancedwhereassignificancethickeningunclearfuturequantitativeevaluationmayhelpcliniciansmonitorpotentialdeleteriouseffectsintegrityReticularPseudodrusenAssociatedAdvancedPara-CentralPhotoreceptorIntermediateAge-RelatedMacular

Similar Articles

Cited By (3)