The efficiency of arbuscular mycorrhiza in increasing tolerance of Triticum aestivum L. to alkaline stress.

Fatma Aly Farghaly, Nivien Allam Nafady, Dalia Ahmed Abdel-Wahab
Author Information
  1. Fatma Aly Farghaly: Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt.
  2. Nivien Allam Nafady: Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt.
  3. Dalia Ahmed Abdel-Wahab: Botany and Microbiology Department, Faculty of Science, New Valley University, El Kharja, Egypt. daliaabdelwahab2018@gmail.com.

Abstract

BACKGROUND: Evaluation of native soil microbes is a realistic way to develop bio-agents for ecological restoration. Soil alkalinity, which has a high pH, is one of the most common concerns in dry and semi-arid climates. Alkaline soils face problems due to poor physical properties, which affect plant growth and crop production. A pot experiment was carried out to investigate the impact of native mycorrhizal fungi (AMF) on the wheat plant (Triticum aestivum L.) under two levels of alkalinity stress -T1 (37 mM NaHCO), T2 (74 mM NaHCO) - at two developmental stages (the vegetative and productive stages).
RESULTS: Alkalinity stress significantly inhibited the germination percentage, plant biomass, photosynthetic pigments, and some nutrients (K, N, and P). Mycorrhizal inoculation improved growth parameters and productivity of wheat-stressed plants. However, lipid peroxidation was significantly lowered in mycorrhizal-inoculated plants compared to non-inoculated plants. Catalase and peroxidase were inhibited in wheat leaves and roots by alkalinity, while mycorrhiza promoted the activity of these enzymes.
CONCLUSION: The results of this study demonstrated that alkalinity stress had highly negative effects on some growth parameters of the wheat plant, while AMF inoculation attenuated these detrimental effects of alkalinity stress at two stages by reducing the pH and Na concentration and increasing the availability of P and the productivity of wheat in particular crop yield parameters.

Keywords

References

  1. Mycorrhiza. 2014 Nov;24(8):611-25 [PMID: 24770494]
  2. Physiol Plant. 2021 Jan;171(1):22-33 [PMID: 32909624]
  3. Front Plant Sci. 2016 May 11;7:644 [PMID: 27242845]
  4. Indian J Microbiol. 2011 Jan;51(1):37-43 [PMID: 22282626]
  5. Mycorrhiza. 2016 Feb;26(2):141-52 [PMID: 26184604]
  6. Mycorrhiza. 2012 Apr;22(3):203-17 [PMID: 21695577]
  7. Microb Ecol. 2007 Nov;54(4):753-60 [PMID: 17372663]
  8. Physiol Mol Biol Plants. 2010 Jul;16(3):317-20 [PMID: 23572981]
  9. Plant Physiol. 2014 Apr;164(4):1636-48 [PMID: 24715539]
  10. Saudi J Biol Sci. 2015 May;22(3):274-83 [PMID: 25972748]
  11. J Plant Physiol. 2009 Apr 1;166(6):617-25 [PMID: 19100656]
  12. Saudi J Biol Sci. 2019 Jan;26(1):38-48 [PMID: 30622405]
  13. Environ Sci Pollut Res Int. 2015 Jan;22(1):598-608 [PMID: 25091168]
  14. Oecologia. 2011 Dec;167(4):913-24 [PMID: 21643790]
  15. Mycorrhiza. 2020 Jul;30(4):431-444 [PMID: 32367433]
  16. Plant Sci. 2000 Aug 8;157(1):113-128 [PMID: 10940475]
  17. PLoS One. 2019 Jul 30;14(7):e0220340 [PMID: 31361760]
  18. BMC Plant Biol. 2018 May 24;18(1):92 [PMID: 29793435]
  19. Appl Environ Microbiol. 1995 Feb;61(2):456-60 [PMID: 16534929]
  20. Plant Sci. 2012 Apr;185-186:238-45 [PMID: 22325886]
  21. Saudi J Biol Sci. 2018 Sep;25(6):1102-1114 [PMID: 30174509]
  22. Sci Total Environ. 2017 Jan 15;576:234-241 [PMID: 27788438]
  23. Plant Physiol. 2010 Mar;152(3):1431-41 [PMID: 20053709]
  24. RSC Adv. 2018 Apr 18;8(26):14500-14509 [PMID: 35540780]
  25. Saudi J Biol Sci. 2020 Jan;27(1):380-394 [PMID: 31889861]
  26. Front Plant Sci. 2021 Jun 04;12:667458 [PMID: 34149764]
  27. Funct Plant Biol. 2012 Sep;39(8):699-707 [PMID: 32480821]
  28. Front Plant Sci. 2019 Apr 12;10:470 [PMID: 31031793]
  29. PLoS One. 2014 Jan 14;9(1):e85282 [PMID: 24454834]
  30. Front Plant Sci. 2019 Jul 03;10:863 [PMID: 31333702]
  31. Mycorrhiza. 2013 Oct;23(7):515-31 [PMID: 23558516]
  32. Front Plant Sci. 2019 Sep 19;10:1068 [PMID: 31608075]
  33. Mycorrhiza. 2001 Aug;11(3):119-122 [PMID: 24595430]
  34. Microbiol Res. 2014 Jan 20;169(1):49-58 [PMID: 23920230]
  35. Methods Enzymol. 1984;105:121-6 [PMID: 6727660]
  36. Sci Rep. 2017 Feb 08;7:42335 [PMID: 28176859]
  37. Antioxidants (Basel). 2019 Sep 01;8(9): [PMID: 31480540]

MeSH Term

Catalase
Mycorrhizae
Plant Roots
Soil
Triticum

Chemicals

Soil
Catalase

Word Cloud

Created with Highcharts 10.0.0alkalinitystressplantwheatgrowthTriticumaestivumtwostagesparametersplantsmycorrhizanativepHcropAMFLNaHCOAlkalinitysignificantlyinhibitedPinoculationproductivityperoxidationeffectsincreasingBACKGROUND:Evaluationsoilmicrobesrealisticwaydevelopbio-agentsecologicalrestorationSoilhighonecommonconcernsdrysemi-aridclimatesAlkalinesoilsfaceproblemsduepoorphysicalpropertiesaffectproductionpotexperimentcarriedinvestigateimpactmycorrhizalfungilevels-T137 mMT274 mM-developmentalvegetativeproductiveRESULTS:germinationpercentagebiomassphotosyntheticpigmentsnutrientsKNMycorrhizalimprovedwheat-stressedHoweverlipidloweredmycorrhizal-inoculatedcomparednon-inoculatedCatalaseperoxidaseleavesrootspromotedactivityenzymesCONCLUSION:resultsstudydemonstratedhighlynegativeattenuateddetrimentalreducingNaconcentrationavailabilityparticularyieldefficiencyarbusculartolerancealkalineAntioxidantsystemArbuscularLipidMineralnutrition

Similar Articles

Cited By