Generation and maturation of human iPSC-derived 3D organotypic cardiac microtissues in long-term culture.

Ece Ergir, Jorge Oliver-De La Cruz, Soraia Fernandes, Marco Cassani, Francesco Niro, Daniel Pereira-Sousa, Jan Vrbský, Vladimír Vinarský, Ana Rubina Perestrelo, Doriana Debellis, Natália Vadovičová, Stjepan Uldrijan, Francesca Cavalieri, Stefania Pagliari, Heinz Redl, Peter Ertl, Giancarlo Forte
Author Information
  1. Ece Ergir: Center for Translational Medicine (CTM), International Clinical Research Centre (FNUSA-ICRC), St. Anne's University Hospital, Studentská 812/6, 62500, Brno, Czech Republic.
  2. Jorge Oliver-De La Cruz: Center for Translational Medicine (CTM), International Clinical Research Centre (FNUSA-ICRC), St. Anne's University Hospital, Studentská 812/6, 62500, Brno, Czech Republic.
  3. Soraia Fernandes: Center for Translational Medicine (CTM), International Clinical Research Centre (FNUSA-ICRC), St. Anne's University Hospital, Studentská 812/6, 62500, Brno, Czech Republic.
  4. Marco Cassani: Center for Translational Medicine (CTM), International Clinical Research Centre (FNUSA-ICRC), St. Anne's University Hospital, Studentská 812/6, 62500, Brno, Czech Republic.
  5. Francesco Niro: Center for Translational Medicine (CTM), International Clinical Research Centre (FNUSA-ICRC), St. Anne's University Hospital, Studentská 812/6, 62500, Brno, Czech Republic.
  6. Daniel Pereira-Sousa: Center for Translational Medicine (CTM), International Clinical Research Centre (FNUSA-ICRC), St. Anne's University Hospital, Studentská 812/6, 62500, Brno, Czech Republic.
  7. Jan Vrbský: Center for Translational Medicine (CTM), International Clinical Research Centre (FNUSA-ICRC), St. Anne's University Hospital, Studentská 812/6, 62500, Brno, Czech Republic.
  8. Vladimír Vinarský: Center for Translational Medicine (CTM), International Clinical Research Centre (FNUSA-ICRC), St. Anne's University Hospital, Studentská 812/6, 62500, Brno, Czech Republic.
  9. Ana Rubina Perestrelo: Center for Translational Medicine (CTM), International Clinical Research Centre (FNUSA-ICRC), St. Anne's University Hospital, Studentská 812/6, 62500, Brno, Czech Republic.
  10. Doriana Debellis: Electron Microscopy Facility, Fondazione Istituto Italiano Di Tecnologia, Via Morego 30, 16163, Genoa, Italy.
  11. Natália Vadovičová: Faculty of Medicine, Department of Biomedical Sciences, Masaryk University, 62500, Brno, Czech Republic.
  12. Stjepan Uldrijan: Faculty of Medicine, Department of Biomedical Sciences, Masaryk University, 62500, Brno, Czech Republic. ORCID
  13. Francesca Cavalieri: Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia.
  14. Stefania Pagliari: Center for Translational Medicine (CTM), International Clinical Research Centre (FNUSA-ICRC), St. Anne's University Hospital, Studentská 812/6, 62500, Brno, Czech Republic.
  15. Heinz Redl: Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, 1200, Vienna, Austria.
  16. Peter Ertl: Faculty of Technical Chemistry, Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics, Vienna University of Technology, 1040, Vienna, Austria.
  17. Giancarlo Forte: Center for Translational Medicine (CTM), International Clinical Research Centre (FNUSA-ICRC), St. Anne's University Hospital, Studentská 812/6, 62500, Brno, Czech Republic. giancarlo.forte@fnusa.cz. ORCID

Abstract

Cardiovascular diseases remain the leading cause of death worldwide; hence there is an increasing focus on developing physiologically relevant in vitro cardiovascular tissue models suitable for studying personalized medicine and pre-clinical tests. Despite recent advances, models that reproduce both tissue complexity and maturation are still limited. We have established a scaffold-free protocol to generate multicellular, beating human cardiac microtissues in vitro from hiPSCs-namely human organotypic cardiac microtissues (hOCMTs)-that show some degree of self-organization and can be cultured for long term. This is achieved by the differentiation of hiPSC in 2D monolayer culture towards cardiovascular lineage, followed by further aggregation on low-attachment culture dishes in 3D. The generated hOCMTs contain multiple cell types that physiologically compose the heart and beat without external stimuli for more than 100 days. We have shown that 3D hOCMTs display improved cardiac specification, survival and metabolic maturation as compared to standard monolayer cardiac differentiation. We also confirmed the functionality of hOCMTs by their response to cardioactive drugs in long-term culture. Furthermore, we demonstrated that they could be used to study chemotherapy-induced cardiotoxicity. Due to showing a tendency for self-organization, cellular heterogeneity, and functionality in our 3D microtissues over extended culture time, we could also confirm these constructs as human cardiac organoids (hCOs). This study could help to develop more physiologically-relevant cardiac tissue models, and represent a powerful platform for future translational research in cardiovascular biology.

References

  1. Methods Mol Biol. 2016;1353:119-30 [PMID: 25690476]
  2. Int J Mol Sci. 2018 Mar 21;19(4): [PMID: 29561796]
  3. Cell. 2016 Jun 16;165(7):1586-1597 [PMID: 27315476]
  4. Nat Biotechnol. 2021 Jun;39(6):737-746 [PMID: 33558697]
  5. Circ Res. 2018 Feb 2;122(3):e5-e16 [PMID: 29282212]
  6. Biomed Res Int. 2016;2016:4081638 [PMID: 28044126]
  7. Development. 2017 Mar 15;144(6):1118-1127 [PMID: 28174241]
  8. FASEB J. 2004 Aug;18(11):1300-2 [PMID: 15180963]
  9. Heart Lung Circ. 2019 Oct;28(10):1598-1605 [PMID: 30205930]
  10. Nat Rev Cardiol. 2020 Jun;17(6):341-359 [PMID: 32015528]
  11. BMJ Open. 2014 Jan 15;4(1):e004221 [PMID: 24435895]
  12. Circ Res. 2014 Aug 29;115(6):556-66 [PMID: 25015077]
  13. Nat Commun. 2021 Aug 26;12(1):5142 [PMID: 34446706]
  14. Stem Cell Reports. 2022 Sep 13;17(9):2037-2049 [PMID: 35931080]
  15. Nat Commun. 2020 Sep 3;11(1):4283 [PMID: 32883967]
  16. Circulation. 2016 Aug 9;134(6):e32-69 [PMID: 27400984]
  17. Clin Cancer Res. 2015 Oct 15;21(20):4552-60 [PMID: 26473191]
  18. Sci Rep. 2020 Apr 24;10(1):6919 [PMID: 32332814]
  19. BMC Bioinformatics. 2013 Apr 15;14:128 [PMID: 23586463]
  20. J Mol Cell Cardiol. 2021 Aug;157:56-65 [PMID: 33895197]
  21. Cell. 2021 Jun 10;184(12):3299-3317.e22 [PMID: 34019794]
  22. Nat Protoc. 2021 Dec;16(12):5652-5672 [PMID: 34759383]
  23. Circ Res. 2020 Apr 10;126(8):1086-1106 [PMID: 32271675]
  24. Nat Med. 1999 Mar;5(3):331-4 [PMID: 10086391]
  25. Prog Cardiovasc Dis. 2007 Mar-Apr;49(5):330-52 [PMID: 17329180]
  26. Nat Commun. 2021 Oct 25;12(1):6167 [PMID: 34697315]
  27. Nat Rev Cardiol. 2018 Nov;15(11):705-724 [PMID: 30266935]
  28. Nat Commun. 2014 Oct 22;5:5288 [PMID: 25335909]
  29. Pediatr Cardiol. 2019 Oct;40(7):1367-1387 [PMID: 31388700]
  30. Adv Healthc Mater. 2017 May;6(10): [PMID: 28267277]
  31. Am J Physiol Heart Circ Physiol. 2019 Mar 1;316(3):H459-H475 [PMID: 30525890]
  32. Cell Stem Cell. 2020 Jun 4;26(6):862-879.e11 [PMID: 32459996]
  33. Cell Rep. 2020 Jul 21;32(3):107925 [PMID: 32697997]
  34. PLoS One. 2011;6(10):e26397 [PMID: 22028871]
  35. Nature. 2013 Jan 17;493(7432):318-26 [PMID: 23325214]
  36. Circ Res. 2021 Jan 8;128(1):24-38 [PMID: 33106094]
  37. Cold Spring Harb Perspect Med. 2014 Mar 01;4(3): [PMID: 24591534]
  38. Sci Rep. 2015 Mar 09;5:8883 [PMID: 25748532]
  39. Circ Res. 2014 Jan 31;114(3):511-23 [PMID: 24481842]
  40. Nat Commun. 2018 Aug 7;9(1):3140 [PMID: 30087351]
  41. Pharmacol Res Perspect. 2021 Oct;9(5):e00863 [PMID: 34609088]
  42. Proc Natl Acad Sci U S A. 2017 Oct 3;114(40):E8372-E8381 [PMID: 28916735]
  43. J Biomech. 2012 Mar 15;45(5):832-41 [PMID: 22236531]
  44. Circ Res. 2014 Jan 17;114(2):354-67 [PMID: 24436431]
  45. Curr Protoc. 2021 Mar;1(3):e90 [PMID: 33780170]
  46. Stem Cell Reports. 2021 May 11;16(5):1228-1244 [PMID: 33891865]
  47. Dis Model Mech. 2019 Jul 29;12(7): [PMID: 31383635]
  48. Nat Protoc. 2018 Dec;13(12):3018-3041 [PMID: 30413796]
  49. Nat Methods. 2014 Aug;11(8):855-60 [PMID: 24930130]
  50. Lab Chip. 2011 Dec 21;11(24):4165-73 [PMID: 22072288]
  51. Genome Res. 2003 Nov;13(11):2498-504 [PMID: 14597658]
  52. Stem Cells. 2010 Nov;28(11):2088-98 [PMID: 20882531]
  53. ESC Heart Fail. 2020 Apr;7(2):588-603 [PMID: 31984667]
  54. Annu Rev Pathol. 2020 Jan 24;15:211-234 [PMID: 31550983]
  55. Am J Physiol Cell Physiol. 2020 Jul 1;319(1):C151-C165 [PMID: 32459504]
  56. JACC Basic Transl Sci. 2019 Apr 29;4(2):269-274 [PMID: 31061928]
  57. Toxicol Sci. 2011 Sep;123(1):281-9 [PMID: 21693436]
  58. Curr Protoc Hum Genet. 2018 Oct;99(1):e67 [PMID: 30253059]
  59. Stem Cell Reports. 2014 Aug 12;3(2):260-8 [PMID: 25254340]
  60. Tissue Eng Part A. 2019 May;25(9-10):786-798 [PMID: 30968738]
  61. Biochem Biophys Res Commun. 2021 Oct 1;572:118-124 [PMID: 34364290]
  62. Chem Res Toxicol. 2021 Feb 15;34(2):412-421 [PMID: 33251791]
  63. Cell Death Differ. 2021 Apr;28(4):1193-1207 [PMID: 33116297]
  64. Sci Rep. 2021 Aug 4;11(1):15845 [PMID: 34349150]
  65. Am J Clin Pathol. 2008 Nov;130(5):688-95 [PMID: 18854260]
  66. Biotechnol Bioeng. 2016 Apr;113(4):859-69 [PMID: 26444553]
  67. Biomed Microdevices. 2007 Apr;9(2):149-57 [PMID: 17146728]
  68. Stem Cells. 2013 Mar;31(3):447-57 [PMID: 23193013]
  69. Sci Rep. 2017 Aug 18;7(1):8837 [PMID: 28821762]
  70. Nat Protoc. 2013 Jan;8(1):162-75 [PMID: 23257984]
  71. Pharmacogenet Genomics. 2011 Jul;21(7):440-6 [PMID: 21048526]
  72. Nat Biomed Eng. 2018 Jun;2(6):351-352 [PMID: 31011196]
  73. Science. 2014 Jul 18;345(6194):1247125 [PMID: 25035496]
  74. Circ Res. 2017 Apr 28;120(9):1487-1500 [PMID: 28450366]
  75. Nat Rev Mol Cell Biol. 2020 Oct;21(10):571-584 [PMID: 32636524]
  76. Genomics. 2021 May;113(3):1349-1365 [PMID: 33713822]
  77. Cell Rep. 2014 Nov 6;9(3):810-21 [PMID: 25437537]
  78. Nature. 2020 Dec;588(7838):466-472 [PMID: 32971526]
  79. Circ Heart Fail. 2013 May;6(3):606-19 [PMID: 23616602]
  80. Cell Calcium. 2015 May;57(5-6):321-36 [PMID: 25746147]
  81. Cell Stem Cell. 2021 Feb 4;28(2):230-240.e6 [PMID: 33176168]
  82. Brain Res. 2019 Dec 1;1724:146427 [PMID: 31473222]
  83. Cell Syst. 2018 Nov 28;7(5):556-561.e3 [PMID: 30447998]
  84. J Cardiovasc Pharmacol. 1990 Jun;15(6):892-9 [PMID: 1694911]
  85. Nat Biomed Eng. 2020 Apr;4(4):446-462 [PMID: 32284552]
  86. J Mol Cell Cardiol. 2012 Jun;52(6):1213-25 [PMID: 22465037]
  87. Cell. 2007 Nov 30;131(5):861-72 [PMID: 18035408]
  88. Circ Res. 2002 Feb 8;90(2):223-30 [PMID: 11834716]
  89. Development. 2017 Mar 15;144(6):1008-1017 [PMID: 28279973]
  90. Nucleic Acids Res. 2016 Jul 8;44(W1):W90-7 [PMID: 27141961]
  91. Cell Stem Cell. 2013 May 2;12(5):520-30 [PMID: 23642363]
  92. Integr Pharm Res Pract. 2019 Feb 04;8:1-11 [PMID: 30788283]
  93. Front Cardiovasc Med. 2019 Jun 26;6:87 [PMID: 31294032]
  94. Lab Chip. 2016 Feb 7;16(3):599-610 [PMID: 26758922]
  95. J Vis Exp. 2015 Mar 18;(97): [PMID: 25867738]
  96. Circ Res. 2015 Apr 10;116(8):1378-91 [PMID: 25858064]
  97. Circ Res. 1985 Mar;56(3):377-91 [PMID: 3882260]
  98. Semin Cell Dev Biol. 2021 Nov;119:49-60 [PMID: 33952430]
  99. Circ Res. 2016 Feb 5;118(3):400-9 [PMID: 26635390]
  100. Biomed Mater. 2015 Jun 11;10(3):034006 [PMID: 26065674]
  101. Cardiovasc Res. 2011 May 1;90(2):202-9 [PMID: 21289012]
  102. Nat Med. 2016 May;22(5):547-56 [PMID: 27089514]
  103. Front Cell Dev Biol. 2020 Mar 19;8:178 [PMID: 32266260]
  104. Stem Cell Reports. 2016 Jul 12;7(1):29-42 [PMID: 27211213]
  105. Integr Biol (Camb). 2018 Mar 1;10(3):174-183 [PMID: 29532839]
  106. Cell Stem Cell. 2021 Dec 2;28(12):2137-2152.e6 [PMID: 34861147]
  107. Cell Stem Cell. 2013 Jan 3;12(1):101-13 [PMID: 23290139]
  108. Lancet. 2020 Oct 17;396(10258):1204-1222 [PMID: 33069326]
  109. Nat Med. 2014 Jun;20(6):616-23 [PMID: 24813252]
  110. Nat Commun. 2015 Jul 14;6:7413 [PMID: 26172574]
  111. J Am Coll Cardiol. 2020 Dec 22;76(25):2982-3021 [PMID: 33309175]
  112. Biochim Biophys Acta Bioenerg. 2018 Sep;1859(9):940-950 [PMID: 29859845]
  113. Proc Natl Acad Sci U S A. 2012 Jul 3;109(27):E1848-57 [PMID: 22645348]
  114. Biomaterials. 2017 Oct;142:112-123 [PMID: 28732246]

MeSH Term

Humans
Induced Pluripotent Stem Cells
Tissue Engineering
Heart
Cell Differentiation
Cardiovascular Agents
Antineoplastic Agents
Myocytes, Cardiac

Chemicals

Cardiovascular Agents
Antineoplastic Agents

Word Cloud

Created with Highcharts 10.0.0cardiacculturehumanmicrotissueshOCMTs3Dcardiovasculartissuemodelsmaturationphysiologicallyvitroorganotypicself-organizationdifferentiationmonolayeralsofunctionalitylong-termstudyCardiovasculardiseasesremainleadingcausedeathworldwidehenceincreasingfocusdevelopingrelevantsuitablestudyingpersonalizedmedicinepre-clinicaltestsDespiterecentadvancesreproducecomplexitystilllimitedestablishedscaffold-freeprotocolgeneratemulticellularbeatinghiPSCs-namely-thatshowdegreecanculturedlongtermachievedhiPSC2Dtowardslineagefollowedaggregationlow-attachmentdishesgeneratedcontainmultiplecelltypescomposeheartbeatwithoutexternalstimuli100 daysshowndisplayimprovedspecificationsurvivalmetaboliccomparedstandardconfirmedresponsecardioactivedrugsFurthermoredemonstratedusedchemotherapy-inducedcardiotoxicityDueshowingtendencycellularheterogeneityextendedtimeconfirmconstructsorganoidshCOshelpdevelopphysiologically-relevantrepresentpowerfulplatformfuturetranslationalresearchbiologyGenerationiPSC-derived

Similar Articles

Cited By