Correlation between Electrolyte Chemistry and Solid Electrolyte Interphase for Reversible Ca Metal Anodes.

Zhen Hou, Rui Zhou, Yunduo Yao, Zhiwen Min, Ziheng Lu, Ye Zhu, Jean-Marie Tarascon, Biao Zhang
Author Information
  1. Zhen Hou: Department of Applied Physics & Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China. ORCID
  2. Rui Zhou: Department of Applied Physics & Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.
  3. Yunduo Yao: Department of Applied Physics & Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.
  4. Zhiwen Min: Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
  5. Ziheng Lu: Microsoft Research AI4Science, Beijing, 100080, China.
  6. Ye Zhu: Department of Applied Physics & Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.
  7. Jean-Marie Tarascon: Chimie du Solide-Energie, UMR 8260, Collège de France, Paris, France.
  8. Biao Zhang: Department of Applied Physics & Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China. ORCID

Abstract

The development of rechargeable Ca metal batteries (RCMBs) is hindered by the Ca passivating solid electrolyte interphases (SEIs). The cation solvation structure dictated by electrolyte chemistry plays a critical role in the SEIs properties. While a relatively weak cation-solvent binding is preferred in Li metal anodes to promote anion-derived SEIs, we demonstrate an enhanced Ca deposition/stripping reversibility under a strong cation-solvent interaction, which is materialized in strongly-solvating solvent and highly-dissociated salt combinations. Such electrolyte formulations benefit the formation of solvent-occupied solvation structure and minimize the anion reduction, resulting in organic-rich/CaF -poor SEIs for reversible Ca metal anodes. Furthermore, RCMBs paired with an organic cathode using the optimized electrolytes are demonstrated as a proof-of-concept. Our work reveals the paradigm shift in SEIs design for Ca metal anodes, opening up new opportunities for emerging RCMBs.

Keywords

References

  1.  
  2. M. Armand, J. M. Tarascon, Nature 2008, 451, 652-657;
  3. R. J. Gummow, G. Vamvounis, M. B. Kannan, Y. He, Adv. Mater. 2018, 30, 1801702;
  4. B. Ji, H. He, W. Yao, Y. Tang, Adv. Mater. 2021, 33, 2005501;
  5. Z. Liang, C. Ban, Angew. Chem. Int. Ed. 2021, 60, 11036-11047;
  6. Angew. Chem. 2021, 133, 11136-11147;
  7. Y. Liang, H. Dong, D. Aurbach, Y. Yao, Nat. Energy 2020, 5, 646-656;
  8. X. Li, T. Gao, F. Han, Z. Ma, X. Fan, S. Hou, N. Eidson, W. Li, C. Wang, Adv. Energy Mater. 2018, 8, 1701728.
  9.  
  10. I. D. Hosein, ACS Energy Lett. 2021, 6, 1560-1565;
  11. M. E. Arroyo-de Dompablo, A. Ponrouch, P. Johansson, M. R. Palacin, Chem. Rev. 2020, 120, 6331-6357;
  12. K. V. Nielson, T. L. Liu, Angew. Chem. Int. Ed. 2020, 59, 3368-3370;
  13. Angew. Chem. 2020, 132, 3392-3394;
  14. M. Wang, C. Jiang, S. Zhang, X. Song, Y. Tang, H. M. Cheng, Nat. Chem. 2018, 10, 667-672.
  15.  
  16. R. J. Staniewicz, J. Electrochem. Soc. 1980, 127, 782;
  17. D. Aurbach, R. Skaletsky, Y. Gofer, J. Electrochem. Soc. 1991, 138, 3536-3545;
  18. L. Stievano, I. de Meatza, J. Bitenc, C. Cavallo, S. Brutti, M. A. Navarra, J. Power Sources 2021, 482, 228875;
  19. A. M. Melemed, B. M. Gallant, J. Electrochem. Soc. 2020, 167, 140543.
  20.  
  21. S. Biria, S. Pathreeker, H. Li, I. D. Hosein, ACS Appl. Energy Mater. 2019, 2, 7738-7743;
  22. X. Gao, X. Liu, A. Mariani, G. A. Elia, M. Lechner, C. Streb, S. Passerini, Energy Environ. Sci. 2020, 13, 2559-2569;
  23. S. Hou, X. Ji, K. Gaskell, P. F. Wang, L. Wang, J. Xu, R. Sun, O. Borodin, C. Wang, Science 2021, 374, 172-178;
  24. N. T. Hahn, J. Self, D. M. Driscoll, N. Dandu, K. S. Han, V. Murugesan, K. T. Mueller, L. A. Curtiss, M. Balasubramanian, K. A. Persson, K. R. Zavadil, Phys. Chem. Chem. Phys. 2022, 24, 674-686;
  25. K. Kisu, S. Kim, T. Shinohara, K. Zhao, A. Zuttel, S. I. Orimo, Sci. Rep. 2021, 11, 7563;
  26. Y. Jie, Y. Tan, L. Li, Y. Han, S. Xu, Z. Zhao, R. Cao, X. Ren, F. Huang, Z. Lei, G. Tao, G. Zhang, S. Jiao, Angew. Chem. Int. Ed. 2020, 59, 12689-12693;
  27. Angew. Chem. 2020, 132, 12789-12793.
  28. A. Ponrouch, C. Frontera, F. Barde, M. R. Palacin, Nat. Mater. 2016, 15, 169-172.
  29. R. Mohtadi, M. Matsui, T. S. Arthur, S. J. Hwang, Angew. Chem. Int. Ed. 2012, 51, 9780-9783;
  30. Angew. Chem. 2012, 124, 9918-9921.
  31. D. Wang, X. Gao, Y. Chen, L. Jin, C. Kuss, P. G. Bruce, Nat. Mater. 2018, 17, 16-20.
  32.  
  33. Z. Li, O. Fuhr, M. Fichtner, Z. Zhao-Karger, Energy Environ. Sci. 2019, 12, 3496-3501;
  34. A. Shyamsunder, L. E. Blanc, A. Assoud, L. F. Nazar, ACS Energy Lett. 2019, 4, 2271-2276.
  35. J. Forero-Saboya, C. Davoisne, R. Dedryvère, I. Yousef, P. Canepa, A. Ponrouch, Energy Environ. Sci. 2020, 13, 3423-3431.
  36.  
  37. G. M. Hobold, J. Lopez, R. Guo, N. Minafra, A. Banerjee, Y. Shirley Meng, Y. Shao-Horn, B. M. Gallant, Nat. Energy 2021, 6, 951-960;
  38. J. Liu, Z. Bao, Y. Cui, E. J. Dufek, J. B. Goodenough, P. Khalifah, Q. Li, B. Y. Liaw, P. Liu, A. Manthiram, Y. S. Meng, V. R. Subramanian, M. F. Toney, V. V. Viswanathan, M. S. Whittingham, J. Xiao, W. Xu, J. Yang, X.-Q. Yang, J.-G. Zhang, Nat. Energy 2019, 4, 180-186.
  39. H. Song, J. Su, C. Wang, Adv. Energy Mater. 2021, 11, 2003685.
  40. C. Yan, H. R. Li, X. Chen, X. Q. Zhang, X. B. Cheng, R. Xu, J. Q. Huang, Q. Zhang, J. Am. Chem. Soc. 2019, 141, 9422-9429.
  41. Y. Jie, X. Liu, Z. Lei, S. Wang, Y. Chen, F. Huang, R. Cao, G. Zhang, S. Jiao, Angew. Chem. Int. Ed. 2020, 59, 3505-3510;
  42. Angew. Chem. 2020, 132, 3533-3538.
  43. L. Johnson, C. Li, Z. Liu, Y. Chen, S. A. Freunberger, P. C. Ashok, B. B. Praveen, K. Dholakia, J. M. Tarascon, P. G. Bruce, Nat. Chem. 2014, 6, 1091-1099.
  44.  
  45. H. Cheng, Q. Sun, L. Li, Y. Zou, Y. Wang, T. Cai, F. Zhao, G. Liu, Z. Ma, W. Wahyudi, Q. Li, J. Ming, ACS Energy Lett. 2022, 7, 490-513;
  46. D. M. Driscoll, N. K. Dandu, N. T. Hahn, T. J. Seguin, K. A. Persson, K. R. Zavadil, L. A. Curtiss, M. Balasubramanian, J. Electrochem. Soc. 2020, 167, 160512;
  47. J. D. Forero-Saboya, E. Marchante, R. B. Araujo, D. Monti, P. Johansson, A. Ponrouch, J. Phys. Chem. C 2019, 123, 29524-29532;
  48. N. T. Hahn, D. M. Driscoll, Z. Yu, G. E. Sterbinsky, L. Cheng, M. Balasubramanian, K. R. Zavadil, ACS Appl. Energy Mater. 2020, 3, 8437-8447.
  49. L. Suo, F. Zheng, Y.-S. Hu, L. Chen, Chin. Phys. 2016, 25, 016101.
  50. Z. Wang, Z. Sun, J. Li, Y. Shi, C. Sun, B. An, H.-M. Cheng, F. Li, Chem. Soc. Rev. 2021, 50, 3178-3210.
  51. A. Gupta, A. Bhargav, A. Manthiram, Adv. Energy Mater. 2019, 9, 1803096.
  52. Z. Yu, P. E. Rudnicki, Z. Zhang, Z. Huang, H. Celik, S. T. Oyakhire, Y. Chen, X. Kong, S. C. Kim, X. Xiao, Nat. Energy 2022, 7, 94-106.

Grants

  1. Project No. 15306422; C5029-18E/Hong Kong Research Grants Council
  2. ZE2F/Hong Kong Polytechnic University

Word Cloud

Created with Highcharts 10.0.0CaSEIsmetalElectrolyteRCMBselectrolyteanodessolvationstructurecation-solventSolidInterphasedevelopmentrechargeablebatterieshinderedpassivatingsolidinterphasescationdictatedchemistryplayscriticalrolepropertiesrelativelyweakbindingpreferredLipromoteanion-deriveddemonstrateenhanceddeposition/strippingreversibilitystronginteractionmaterializedstrongly-solvatingsolventhighly-dissociatedsaltcombinationsformulationsbenefitformationsolvent-occupiedminimizeanionreductionresultingorganic-rich/CaF-poorreversibleFurthermorepairedorganiccathodeusingoptimizedelectrolytesdemonstratedproof-of-conceptworkrevealsparadigmshiftdesignopeningnewopportunitiesemergingCorrelationChemistryReversibleMetalAnodesDeposition/StrippingFormulationSolvationStructure

Similar Articles

Cited By