Neural underpinning of a respiration-associated resting-state fMRI network.

Wenyu Tu, Nanyin Zhang
Author Information
  1. Wenyu Tu: The Neuroscience Graduate Program, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, United States. ORCID
  2. Nanyin Zhang: The Neuroscience Graduate Program, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, United States. ORCID

Abstract

Respiration can induce motion and CO fluctuation during resting-state fMRI (rsfMRI) scans, which will lead to non-neural artifacts in the rsfMRI signal. In the meantime, as a crucial physiologic process, respiration can directly drive neural activity change in the brain, and may thereby modulate the rsfMRI signal. Nonetheless, this potential neural component in the respiration-fMRI relationship is largely unexplored. To elucidate this issue, here we simultaneously recorded the electrophysiology, rsfMRI, and respiration signals in rats. Our data show that respiration is indeed associated with neural activity changes, evidenced by a phase-locking relationship between slow respiration variations and the gamma-band power of the electrophysiological signal recorded in the anterior cingulate cortex. Intriguingly, slow respiration variations are also linked to a characteristic rsfMRI network, which is mediated by gamma-band neural activity. In addition, this respiration-related brain network disappears when brain-wide neural activity is silenced at an isoelectrical state, while the respiration is maintained, further confirming the necessary role of neural activity in this network. Taken together, this study identifies a respiration-related brain network underpinned by neural activity, which represents a novel component in the respiration-rsfMRI relationship that is distinct from respiration-related rsfMRI artifacts. It opens a new avenue for investigating the interactions between respiration, neural activity, and resting-state brain networks in both healthy and diseased conditions.

Keywords

References

  1. J Neurosci. 2016 May 11;36(19):5338-52 [PMID: 27170130]
  2. Magn Reson Med. 2000 Nov;44(5):758-65 [PMID: 11064411]
  3. Proc Natl Acad Sci U S A. 2012 Mar 6;109(10):3979-84 [PMID: 22355129]
  4. J Neurosci Methods. 2017 Sep 01;289:31-38 [PMID: 28687521]
  5. Elife. 2021 Apr 27;10: [PMID: 33904411]
  6. Br J Clin Pharmacol. 2018 Jun;84(6):1364-1372 [PMID: 29495085]
  7. Curr Opin Behav Sci. 2020 Jun;33:42-50 [PMID: 32613032]
  8. Neuroimage. 2006 Jul 15;31(4):1536-48 [PMID: 16632379]
  9. Neuroimage. 2009 Sep;47(3):961-71 [PMID: 19450692]
  10. Neuroimage. 2008 Apr 1;40(2):644-654 [PMID: 18234517]
  11. J Physiol. 1942 Mar 31;100(4):459-73 [PMID: 16991539]
  12. Exp Physiol. 2008 Sep;93(9):1011-21 [PMID: 18487316]
  13. Elife. 2021 Aug 17;10: [PMID: 34402425]
  14. Neuroimage. 2020 Feb 15;207:116390 [PMID: 31785420]
  15. Hum Brain Mapp. 2005 Apr;24(4):284-90 [PMID: 15678482]
  16. Proc Natl Acad Sci U S A. 2017 Apr 25;114(17):4519-4524 [PMID: 28396398]
  17. Magn Reson Imaging. 2002 Oct;20(8):575-82 [PMID: 12467863]
  18. J Neurosci. 2003 Sep 3;23(22):7993-8001 [PMID: 12954860]
  19. Sci Rep. 2018 Apr 24;8(1):6432 [PMID: 29691421]
  20. J Neurosci. 2016 Jan 06;36(1):162-77 [PMID: 26740658]
  21. Neuroimage. 2022 Apr 1;249:118888 [PMID: 35017126]
  22. Neuroimage. 2020 Jun;213:116707 [PMID: 32145437]
  23. Neuroimage. 2017 Jul 1;154:128-149 [PMID: 27956209]
  24. Brain Struct Funct. 2014 Sep;219(5):1735-54 [PMID: 23797208]
  25. Cell Rep. 2017 Oct 24;21(4):919-925 [PMID: 29069599]
  26. J Appl Physiol (1985). 2003 Sep;95(3):1170-8 [PMID: 12754178]
  27. PLoS Biol. 2021 Jul 15;19(7):e3001298 [PMID: 34264930]
  28. J Comp Neurol. 2005 Jul 25;488(2):224-31 [PMID: 15924345]
  29. Psychophysiology. 2018 Sep;55(9):e13091 [PMID: 29682753]
  30. Magn Reson Med. 2000 Jul;44(1):162-7 [PMID: 10893535]
  31. Neuroimage. 2014 Nov 15;102 Pt 2:838-47 [PMID: 25175535]
  32. Brain Connect. 2011;1(2):119-31 [PMID: 22433008]
  33. Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):13040-5 [PMID: 19620724]
  34. Neuroimage. 2021 Apr 15;230:117783 [PMID: 33516896]
  35. Cogn Neurodyn. 2008 Sep;2(3):179-94 [PMID: 19003484]
  36. Trends Neurosci. 2009 Apr;32(4):207-14 [PMID: 19243843]
  37. Science. 2017 Mar 31;355(6332):1411-1415 [PMID: 28360327]
  38. Proc Natl Acad Sci U S A. 2001 Feb 13;98(4):2035-40 [PMID: 11172071]
  39. Neuroimage. 2021 Aug 15;237:118219 [PMID: 34052466]
  40. Magn Reson Med. 1995 Oct;34(4):537-41 [PMID: 8524021]
  41. Elife. 2021 Dec 14;10: [PMID: 34904567]
  42. Neuroimage. 2017 Feb 1;146:320-326 [PMID: 27888058]
  43. Am J Physiol Regul Integr Comp Physiol. 2016 Mar 1;310(5):R398-413 [PMID: 26676248]
  44. Anesth Analg. 1990 Nov;71(5):451-9 [PMID: 1977331]
  45. Front Neural Circuits. 2021 Oct 27;15:761812 [PMID: 34790100]
  46. Trends Neurosci. 2018 Apr;41(4):186-197 [PMID: 29429805]
  47. Cereb Cortex. 2021 Jan 1;31(1):312-323 [PMID: 32820327]
  48. J Neurosci. 2016 Dec 7;36(49):12448-12467 [PMID: 27927961]
  49. Nat Commun. 2014 Apr 01;5:3572 [PMID: 24686563]
  50. Neuroimage. 2016 Jul 1;134:305-313 [PMID: 27033686]
  51. Science. 1991 Nov 1;254(5032):726-9 [PMID: 1683005]
  52. Ann Clin Transl Neurol. 2019 May 01;6(5):837-847 [PMID: 31139681]
  53. Front Neurosci. 2018 Nov 02;12:788 [PMID: 30455623]
  54. J Neurosci. 2014 Apr 23;34(17):5949-64 [PMID: 24760854]
  55. Phys Med Biol. 2000 Dec;45(12):3809-20 [PMID: 11131201]
  56. Nature. 2001 Jul 12;412(6843):150-7 [PMID: 11449264]
  57. Exp Physiol. 2021 Mar;106(3):726-735 [PMID: 33369804]
  58. Neuroimage. 2004 Apr;21(4):1652-64 [PMID: 15050588]
  59. Neuroimage. 2013 Oct 15;80:349-59 [PMID: 23571418]
  60. Exp Physiol. 1996 Jan;81(1):1-26 [PMID: 8869137]
  61. Philos Trans R Soc Lond B Biol Sci. 2016 Oct 5;371(1705): [PMID: 27574304]
  62. Proc Natl Acad Sci U S A. 2013 Mar 19;110(12):E1142-51 [PMID: 23487781]
  63. Proc Natl Acad Sci U S A. 2008 Apr 29;105(17):6409-14 [PMID: 18443293]
  64. Nat Neurosci. 2017 Dec;20(12):1761-1769 [PMID: 29184204]
  65. Nat Rev Neurosci. 2007 Sep;8(9):700-11 [PMID: 17704812]
  66. J Neurophysiol. 2005 Jun;93(6):3573-81 [PMID: 15689385]
  67. Anesthesiology. 2017 Dec;127(6):976-988 [PMID: 28938276]
  68. J Neurophysiol. 2002 Sep;88(3):1500-11 [PMID: 12205170]
  69. J Comp Neurol. 1994 Aug 15;346(3):403-34 [PMID: 7527806]
  70. J Neurosci. 2012 Jan 25;32(4):1395-407 [PMID: 22279224]
  71. J Neurophysiol. 2018 Jan 1;119(1):145-159 [PMID: 28954895]
  72. Sci Rep. 2021 Jun 23;11(1):13110 [PMID: 34162952]
  73. Neuroimage. 2009 Oct 1;47(4):1381-93 [PMID: 19393322]
  74. Sci Rep. 2017 Mar 28;7:45508 [PMID: 28349959]
  75. Neuroimage. 2016 Dec;143:141-151 [PMID: 27612646]
  76. Nat Neurosci. 2005 Sep;8(9):1142-4 [PMID: 16116455]
  77. Neuroimage. 2013 Oct 1;79:81-93 [PMID: 23631982]
  78. J Neurosci. 2012 Aug 15;32(33):11176-86 [PMID: 22895703]
  79. Neuroimage. 2005 Apr 15;25(3):824-37 [PMID: 15808983]
  80. Cereb Cortex. 2016 Feb;26(2):683-694 [PMID: 25331598]

Grants

  1. R01 GM141792/NIGMS NIH HHS
  2. R01 NS085200/NINDS NIH HHS
  3. RF1 MH114224/NIMH NIH HHS

MeSH Term

Animals
Rats
Magnetic Resonance Imaging
Brain Mapping
Rest
Brain
Respiration

Word Cloud

Created with Highcharts 10.0.0respirationneuralactivityrsfMRInetworkresting-statebrainfMRIsignalrelationshiprespiration-relatedcanartifactscomponentrecordedelectrophysiologyslowvariationsgamma-bandRespirationinducemotionCOfluctuationscanswillleadnon-neuralmeantimecrucialphysiologicprocessdirectlydrivechangemaytherebymodulateNonethelesspotentialrespiration-fMRIlargelyunexploredelucidateissuesimultaneouslysignalsratsdatashowindeedassociatedchangesevidencedphase-lockingpowerelectrophysiologicalanteriorcingulatecortexIntriguinglyalsolinkedcharacteristicmediatedadditiondisappearsbrain-widesilencedisoelectricalstatemaintainedconfirmingnecessaryroleTakentogetherstudyidentifiesunderpinnedrepresentsnovelrespiration-rsfMRIdistinctopensnewavenueinvestigatinginteractionsnetworkshealthydiseasedconditionsNeuralunderpinningrespiration-associatedRVTneurosciencephysiologicalartifactrat

Similar Articles

Cited By (10)