Structure of Klebsiella pneumoniae adenosine monophosphate nucleosidase.

Brian C Richardson, Roger Shek, Wesley C Van Voorhis, Jarrod B French
Author Information
  1. Brian C Richardson: The Hormel Institute, University of Minnesota, Austin, Minnesota, United States of America.
  2. Roger Shek: Division of Allergy and Infectious Diseases, Department of Medicine, Center for Emerging and Re-emerging Infectious Diseases, University of Washington School of Medicine, Seattle, WA, United States of America.
  3. Wesley C Van Voorhis: Division of Allergy and Infectious Diseases, Department of Medicine, Center for Emerging and Re-emerging Infectious Diseases, University of Washington School of Medicine, Seattle, WA, United States of America.
  4. Jarrod B French: The Hormel Institute, University of Minnesota, Austin, Minnesota, United States of America. ORCID

Abstract

Klebsiella pneumoniae is a bacterial pathogen that is increasingly responsible for hospital-acquired pneumonia and sepsis. Progressive development of antibiotic resistance has led to higher mortality rates and creates a need for novel treatments. Because of the essential role that nucleotides play in many bacterial processes, enzymes involved in purine and pyrimidine metabolism and transport are ideal targets for the development of novel antibiotics. Herein we describe the structure of K. pneumoniae adenosine monophosphate nucleosidase (KpAmn), a purine salvage enzyme unique to bacteria, as determined by cryoelectron microscopy. The data detail a well conserved fold with a hexameric overall structure and clear density for the putative active site residues. Comparison to the crystal structures of homologous prokaryotic proteins confirms the presence of many of the conserved structural features of this protein yet reveals differences in distal loops in the absence of crystal contacts. This first cryo-EM structure of an Amn enzyme provides a basis for future structure-guided drug development and extends the accuracy of structural characterization of this family of proteins beyond this clinically relevant organism.

References

  1. Protein Sci. 2018 Jan;27(1):293-315 [PMID: 29067766]
  2. Nucleic Acids Res. 2016 Jul 8;44(W1):W344-50 [PMID: 27166375]
  3. Biochemistry. 1971 Aug 31;10(18):3411-7 [PMID: 5118623]
  4. Toxicol Sci. 2010 Jul;116(1):140-50 [PMID: 20338993]
  5. J Comput Chem. 2004 Oct;25(13):1605-12 [PMID: 15264254]
  6. Nat Methods. 2021 May;18(5):463-471 [PMID: 33963356]
  7. Methods Enzymol. 1978;51:263-70 [PMID: 357895]
  8. J Mol Biol. 2005 Aug 12;351(2):431-42 [PMID: 16005885]
  9. Biochemistry. 2019 Jul 30;58(30):3280-3292 [PMID: 31283204]
  10. J Biol Chem. 1986 Apr 5;261(10):4451-9 [PMID: 3485632]
  11. Microbiol Mol Biol Rev. 2016 Jun 15;80(3):629-61 [PMID: 27307579]
  12. J Struct Biol. 2012 Dec;180(3):519-30 [PMID: 23000701]
  13. Biochem Soc Trans. 2021 Nov 1;49(5):2345-2355 [PMID: 34581758]
  14. Nat Methods. 2017 Mar;14(3):290-296 [PMID: 28165473]
  15. Front Microbiol. 2016 Jun 13;7:895 [PMID: 27379038]
  16. Eur J Biochem. 1968 Dec;7(1):137-45 [PMID: 4884583]
  17. Front Cell Infect Microbiol. 2020 Mar 17;10:107 [PMID: 32257966]
  18. Nat Methods. 2015 Oct;12(10):943-6 [PMID: 26280328]
  19. Nat Rev Microbiol. 2006 Sep;4(9):710-6 [PMID: 16894338]
  20. Structure. 2004 Aug;12(8):1383-94 [PMID: 15296732]
  21. Methods Mol Biol. 2020;2112:29-42 [PMID: 32006276]
  22. Microb Cell Fact. 2022 Jan 4;21(1):2 [PMID: 34983520]
  23. Proc Natl Acad Sci U S A. 1979 Jun;76(6):2730-4 [PMID: 111240]
  24. Biotechnol Adv. 2019 Jan - Feb;37(1):177-192 [PMID: 30500353]
  25. Sci Rep. 2015 Sep 15;5:14214 [PMID: 26370141]
  26. J Biol Chem. 1980 Nov 25;255(22):10867-74 [PMID: 7000783]
  27. J Biol Chem. 1984 Jun 10;259(11):6972-8 [PMID: 6327703]
  28. Proteins. 2019 Dec;87(12):1298-1314 [PMID: 31589784]
  29. Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):486-501 [PMID: 20383002]
  30. Front Microbiol. 2019 Apr 01;10:539 [PMID: 30988669]
  31. Genome Res. 2004 Jun;14(6):1188-90 [PMID: 15173120]
  32. Biochim Biophys Acta. 1992 Apr 17;1120(3):239-47 [PMID: 1576149]
  33. Acta Crystallogr D Struct Biol. 2019 Oct 1;75(Pt 10):861-877 [PMID: 31588918]
  34. IUCrJ. 2021 Dec 10;9(Pt 1):98-103 [PMID: 35059214]
  35. Cancer Res. 1977 Jul;37(7 Pt 1):2043-9 [PMID: 861933]
  36. Nucleic Acids Res. 2004 Mar 19;32(5):1792-7 [PMID: 15034147]
  37. Protein Sci. 2016 Jun;25(6):1096-114 [PMID: 26990888]

Grants

  1. HHSN272201700059C/NIAID NIH HHS
  2. R35 GM124898/NIGMS NIH HHS

MeSH Term

Humans
Klebsiella pneumoniae
Cryoelectron Microscopy
N-Glycosyl Hydrolases
Anti-Bacterial Agents
Purines
Nucleotides
Adenosine Monophosphate
Pyrimidines
Klebsiella Infections

Chemicals

N-Glycosyl Hydrolases
Anti-Bacterial Agents
Purines
Nucleotides
Adenosine Monophosphate
Pyrimidines

Word Cloud

Created with Highcharts 10.0.0pneumoniaedevelopmentstructureKlebsiellabacterialnovelmanypurineadenosinemonophosphatenucleosidaseenzymeconservedcrystalproteinsstructuralpathogenincreasinglyresponsiblehospital-acquiredpneumoniasepsisProgressiveantibioticresistanceledhighermortalityratescreatesneedtreatmentsessentialrolenucleotidesplayprocessesenzymesinvolvedpyrimidinemetabolismtransportidealtargetsantibioticsHereindescribeKKpAmnsalvageuniquebacteriadeterminedcryoelectronmicroscopydatadetailwellfoldhexamericoverallcleardensityputativeactivesiteresiduesComparisonstructureshomologousprokaryoticconfirmspresencefeaturesproteinyetrevealsdifferencesdistalloopsabsencecontactsfirstcryo-EMAmnprovidesbasisfuturestructure-guideddrugextendsaccuracycharacterizationfamilybeyondclinicallyrelevantorganismStructure

Similar Articles

Cited By