Phytomicrobiome communications: Novel implications for stress resistance in plants.

Kanika Khanna, Sukhmeen Kaur Kohli, Nandni Sharma, Jaspreet Kour, Kamini Devi, Tamanna Bhardwaj, Shalini Dhiman, Arun Dev Singh, Neerja Sharma, Anket Sharma, Puja Ohri, Renu Bhardwaj, Parvaiz Ahmad, Pravej Alam, Thamer H Albalawi
Author Information
  1. Kanika Khanna: Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India.
  2. Sukhmeen Kaur Kohli: Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India.
  3. Nandni Sharma: Department of Zoology, Guru Nanak Dev University, Amritsar, India.
  4. Jaspreet Kour: Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India.
  5. Kamini Devi: Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India.
  6. Tamanna Bhardwaj: Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India.
  7. Shalini Dhiman: Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India.
  8. Arun Dev Singh: Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India.
  9. Neerja Sharma: Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India.
  10. Anket Sharma: State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China.
  11. Puja Ohri: Department of Zoology, Guru Nanak Dev University, Amritsar, India.
  12. Renu Bhardwaj: Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India.
  13. Parvaiz Ahmad: Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia.
  14. Pravej Alam: Department of Biology, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia.
  15. Thamer H Albalawi: Department of Biology, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia.

Abstract

The agricultural sector is a foremost contributing factor in supplying food at the global scale. There are plethora of biotic as well as abiotic stressors that act as major constraints for the agricultural sector in terms of global food demand, quality, and security. Stresses affect rhizosphere and their communities, root growth, plant health, and productivity. They also alter numerous plant physiological and metabolic processes. Moreover, they impact transcriptomic and metabolomic changes, causing alteration in root exudates and affecting microbial communities. Since the evolution of hazardous pesticides and fertilizers, productivity has experienced elevation but at the cost of impeding soil fertility thereby causing environmental pollution. Therefore, it is crucial to develop sustainable and safe means for crop production. The emergence of various pieces of evidence depicting the alterations and abundance of microbes under stressed conditions proved to be beneficial and outstanding for maintaining plant legacy and stimulating their survival. Beneficial microbes offer a great potential for plant growth during stresses in an economical manner. Moreover, they promote plant growth with regulating phytohormones, nutrient acquisition, siderophore synthesis, and induce antioxidant system. Besides, acquired or induced systemic resistance also counteracts biotic stresses. The phytomicrobiome exploration is crucial to determine the growth-promoting traits, colonization, and protection of plants from adversities caused by stresses. Further, the intercommunications among rhizosphere through a direct/indirect manner facilitate growth and form complex network. The phytomicrobiome communications are essential for promoting sustainable agriculture where microbes act as ecological engineers for environment. In this review, we have reviewed our building knowledge about the role of microbes in plant defense and stress-mediated alterations within the phytomicrobiomes. We have depicted the defense biome concept that infers the design of phytomicrobiome communities and their fundamental knowledge about plant-microbe interactions for developing plant probiotics.

Keywords

References

  1. Microbiol Res. 2018 Mar;207:41-52 [PMID: 29458867]
  2. Appl Environ Microbiol. 2010 Jun;76(12):4063-75 [PMID: 20435775]
  3. ISME J. 2018 May;12(5):1252-1262 [PMID: 29358736]
  4. BMC Plant Biol. 2019 Sep 3;19(1):383 [PMID: 31481025]
  5. Proc Natl Acad Sci U S A. 2015 Sep 8;112(36):E5013-20 [PMID: 26305938]
  6. Plants (Basel). 2016 Aug 11;5(3): [PMID: 27529286]
  7. Trends Plant Sci. 2017 Jul;22(7):583-595 [PMID: 28549621]
  8. Plant Biol (Stuttg). 2016 Nov;18(6):992-1000 [PMID: 27607023]
  9. Nat Chem Biol. 2009 May;5(5):308-16 [PMID: 19377457]
  10. Nat Rev Microbiol. 2013 Nov;11(11):789-99 [PMID: 24056930]
  11. New Phytol. 2014 Jul;203(1):32-43 [PMID: 24720847]
  12. Annu Rev Plant Biol. 2010;61:443-62 [PMID: 20192746]
  13. Trends Biotechnol. 2020 Dec;38(12):1385-1396 [PMID: 32451122]
  14. Front Microbiol. 2019 May 21;10:1106 [PMID: 31164880]
  15. Front Microbiol. 2019 Jul 09;10:1506 [PMID: 31338077]
  16. Ann Bot. 2012 Jul;110(2):281-90 [PMID: 22437662]
  17. Biotechnol Adv. 2010 May-Jun;28(3):367-74 [PMID: 20149857]
  18. ISME J. 2018 Jun;12(6):1496-1507 [PMID: 29520025]
  19. Trends Plant Sci. 2014 Dec;19(12):757-63 [PMID: 25239777]
  20. Curr Opin Microbiol. 2019 Jun;49:7-17 [PMID: 31563068]
  21. FEMS Microbiol Ecol. 2019 Oct 1;95(10): [PMID: 31504462]
  22. Chemosphere. 2022 Oct;305:135488 [PMID: 35764116]
  23. Biochem Biophys Res Commun. 2016 Jan 1;469(1):120-125 [PMID: 26616055]
  24. New Phytol. 2018 Dec;220(4):1296-1308 [PMID: 29424928]
  25. Microbiol Res. 2021 Jan;242:126626 [PMID: 33189069]
  26. Planta. 2011 Jun;233(6):1237-52 [PMID: 21336597]
  27. PLoS One. 2013;8(1):e53182 [PMID: 23301041]
  28. Chemosphere. 2016 Aug;156:312-325 [PMID: 27183333]
  29. Plant Sci. 2011 Oct;181(4):479-84 [PMID: 21889055]
  30. Plants (Basel). 2022 May 26;11(11): [PMID: 35684193]
  31. Plant Cell Environ. 2019 Oct;42(10):2827-2843 [PMID: 31222757]
  32. Saudi J Biol Sci. 2021 Aug;28(8):4217-4223 [PMID: 34354402]
  33. Nature. 2017 Mar 23;543(7646):513-518 [PMID: 28297714]
  34. Planta. 2020 Mar 18;251(4):83 [PMID: 32189086]
  35. Annu Rev Phytopathol. 2017 Aug 4;55:61-83 [PMID: 28489497]
  36. Trends Plant Sci. 2010 Sep;15(9):507-14 [PMID: 20542720]
  37. Front Plant Sci. 2018 Dec 04;9:1801 [PMID: 30564264]
  38. Microbiol Res. 2017 Apr;197:65-73 [PMID: 28219527]
  39. Microbiome. 2018 Sep 12;6(1):156 [PMID: 30208962]
  40. Cells. 2021 Apr 29;10(5): [PMID: 33946942]
  41. J Proteomics. 2016 Mar 16;136:202-13 [PMID: 26812498]
  42. Front Plant Sci. 2020 Jul 23;11:963 [PMID: 32793250]
  43. J Plant Physiol. 2015 Feb 1;174:87-96 [PMID: 25462971]
  44. Plant Biol (Stuttg). 2020 Sep;22(5):850-862 [PMID: 32329163]
  45. Nature. 2015 Dec 17;528(7582):364-9 [PMID: 26633631]
  46. Front Plant Sci. 2021 Jun 11;12:665590 [PMID: 34177981]
  47. J Exp Bot. 2012 May;63(9):3429-44 [PMID: 22213816]
  48. Curr Opin Plant Biol. 2015 Oct;27:52-8 [PMID: 26125499]
  49. Plant J. 2020 Aug;103(3):951-964 [PMID: 32324287]
  50. Mol Plant Microbe Interact. 2018 Oct;31(10):982-994 [PMID: 29547355]
  51. J Zhejiang Univ Sci B. 2019 Jun;20(6):513-527 [PMID: 31090277]
  52. Plant Physiol Biochem. 2020 Oct;155:406-415 [PMID: 32814277]
  53. Microb Ecol. 2020 Feb;79(2):397-408 [PMID: 31448388]
  54. Microbiol Res. 2019 Mar;220:12-20 [PMID: 30744815]
  55. Trends Microbiol. 2015 Oct;23(10):606-617 [PMID: 26422463]
  56. Proc Natl Acad Sci U S A. 2020 Feb 18;117(7):3874-3883 [PMID: 32015118]
  57. J Exp Bot. 2011 Oct;62(14):4731-48 [PMID: 21737415]
  58. Trends Microbiol. 2017 Aug;25(8):610-613 [PMID: 28550943]
  59. Front Microbiol. 2020 Aug 20;11:1952 [PMID: 32973708]
  60. Mol Plant Microbe Interact. 2012 Feb;25(2):139-50 [PMID: 21995763]
  61. Chemosphere. 2020 Apr;244:125521 [PMID: 31812764]
  62. Front Microbiol. 2017 Jan 23;8:11 [PMID: 28167932]
  63. FEMS Microbiol Ecol. 2019 Jan 1;95(1): [PMID: 30307579]
  64. Microbiol Res. 2021 Jan;242:126616 [PMID: 33115624]
  65. Funct Plant Biol. 2016 Mar;43(2):161-172 [PMID: 32480450]
  66. Protoplasma. 2018 Jan;255(1):359-373 [PMID: 28879466]
  67. Pathogens. 2021 Oct 12;10(10): [PMID: 34684253]
  68. Trends Plant Sci. 2019 Mar;24(3):187-189 [PMID: 30738790]
  69. J Biosci. 2022;47: [PMID: 35092408]
  70. Trends Plant Sci. 2016 Oct;21(10):854-860 [PMID: 27401253]
  71. Synth Syst Biotechnol. 2019 Mar 06;4(2):92-98 [PMID: 30899819]
  72. Physiol Plant. 2015 Jan;153(1):79-90 [PMID: 24796562]
  73. Nat Commun. 2018 Aug 24;9(1):3429 [PMID: 30143616]
  74. Front Plant Sci. 2019 Feb 21;10:157 [PMID: 30881364]
  75. Front Microbiol. 2017 Dec 19;8:2552 [PMID: 29312235]
  76. Scientifica (Cairo). 2012;2012:963401 [PMID: 24278762]
  77. Microbiol Res. 2005;160(2):197-202 [PMID: 15881837]
  78. Cell. 2018 Nov 1;175(4):973-983.e14 [PMID: 30388454]
  79. Nat Rev Microbiol. 2012 Dec;10(12):828-40 [PMID: 23154261]
  80. Res Microbiol. 2018 Jan;169(1):20-32 [PMID: 28893659]
  81. Nat Microbiol. 2018 Apr;3(4):470-480 [PMID: 29556109]
  82. Biochem Biophys Res Commun. 2016 Jan 22;469(4):967-77 [PMID: 26718401]
  83. BMC Plant Biol. 2014 Jan 25;14:36 [PMID: 24460926]
  84. Microbiol Res. 2021 Jul;248:126763 [PMID: 33892241]
  85. Biol Rev Camb Philos Soc. 2012 Feb;87(1):52-71 [PMID: 21631700]
  86. Front Plant Sci. 2017 Feb 09;8:172 [PMID: 28232845]
  87. Plant Dis. 2018 Jan;102(1):67-72 [PMID: 30673446]
  88. Sci Rep. 2020 Mar 16;10(1):4818 [PMID: 32179779]
  89. Trends Genet. 2016 Apr;32(4):189-200 [PMID: 26916078]
  90. Physiol Plant. 2017 Dec;161(4):502-514 [PMID: 28786221]
  91. Ecology. 2007 Jun;88(6):1386-94 [PMID: 17601131]
  92. Commun Integr Biol. 2021 Jun 24;14(1):136-150 [PMID: 34239684]
  93. Waste Manag. 2017 Nov;69:136-153 [PMID: 28823698]
  94. J Exp Bot. 2015 Jan;66(1):137-46 [PMID: 25371499]
  95. Nat Commun. 2017 Nov 14;8(1):1290 [PMID: 29138387]
  96. J Microbiol Methods. 2015 Mar;110:7-14 [PMID: 25573587]
  97. J Environ Manage. 2020 Mar 1;257:109982 [PMID: 31868642]
  98. Chemosphere. 2020 Jul;251:126310 [PMID: 32443249]
  99. Proc Natl Acad Sci U S A. 2018 May 29;115(22):E5213-E5222 [PMID: 29686086]
  100. Appl Environ Microbiol. 1995 Apr;61(4):1653-4 [PMID: 16535007]
  101. Crit Rev Biotechnol. 2021 May;41(3):370-393 [PMID: 33550862]
  102. Front Microbiol. 2019 May 22;10:1142 [PMID: 31178845]
  103. Plant Mol Biol. 2016 Apr;90(6):635-44 [PMID: 26085172]
  104. Appl Microbiol Biotechnol. 2019 Jan;103(1):9-25 [PMID: 30315353]
  105. Proc Natl Acad Sci U S A. 2018 May 1;115(18):E4284-E4293 [PMID: 29666229]
  106. Plant Cell. 2010 Mar;22(3):973-90 [PMID: 20348432]
  107. PLoS Biol. 2018 Aug 7;16(8):e2006352 [PMID: 30086128]
  108. Front Microbiol. 2018 Sep 11;9:2119 [PMID: 30254615]
  109. Nat Biotechnol. 2019 Jun;37(6):676-684 [PMID: 31036930]
  110. Annu Rev Phytopathol. 2012;50:403-24 [PMID: 22681451]
  111. Microbiome. 2019 Apr 11;7(1):59 [PMID: 30975184]
  112. Nat Prod Rep. 2015 Jul;32(7):956-70 [PMID: 26000872]
  113. Genes (Basel). 2018 Feb 27;9(3): [PMID: 29495432]
  114. Science. 2011 May 27;332(6033):1097-100 [PMID: 21551032]
  115. Nat Biotechnol. 2018 Oct 08;: [PMID: 30295674]
  116. Nat Ecol Evol. 2019 Mar;3(3):430-439 [PMID: 30718852]
  117. Sci Total Environ. 2015 Mar 1;508:29-36 [PMID: 25437950]
  118. Science. 2019 Nov 1;366(6465):606-612 [PMID: 31672892]
  119. J Biotechnol. 2020 Jan 10;307:182-192 [PMID: 31697976]
  120. Front Microbiol. 2016 Nov 18;7:1785 [PMID: 27917154]
  121. Microorganisms. 2021 Mar 19;9(3): [PMID: 33808642]
  122. Front Plant Sci. 2020 May 25;11:634 [PMID: 32523595]
  123. Biochem J. 2019 Oct 15;476(19):2705-2724 [PMID: 31654057]
  124. New Phytol. 2014 Nov;204(3):631-637 [PMID: 25039372]
  125. Front Microbiol. 2018 May 01;9:722 [PMID: 29765357]
  126. Trends Plant Sci. 2020 Aug;25(8):733-743 [PMID: 32345569]
  127. Physiol Mol Biol Plants. 2020 May;26(5):1075-1085 [PMID: 32377055]
  128. Front Plant Sci. 2018 Oct 05;9:1467 [PMID: 30344529]
  129. Front Plant Sci. 2018 Feb 08;9:122 [PMID: 29472941]
  130. Nature. 2006 Nov 16;444(7117):323-9 [PMID: 17108957]
  131. Ecotoxicol Environ Saf. 2016 Feb;124:435-446 [PMID: 26615479]
  132. Curr Opin Microbiol. 2017 Jun;37:8-14 [PMID: 28433932]
  133. Science. 2019 May 10;364(6440): [PMID: 31073042]
  134. Sci Rep. 2017 Nov 27;7(1):16409 [PMID: 29180695]
  135. N Biotechnol. 2020 May 25;56:130-139 [PMID: 31945501]
  136. ISME J. 2018 Feb;12(2):312-319 [PMID: 29135971]
  137. Curr Biol. 2019 Nov 18;29(22):3913-3920.e4 [PMID: 31668625]
  138. Front Microbiol. 2018 Jun 04;9:1133 [PMID: 29915566]
  139. Plants (Basel). 2022 May 31;11(11): [PMID: 35684247]
  140. mSystems. 2016 Mar 29;1(2): [PMID: 27822520]
  141. Sci Rep. 2017 Jun 21;7(1):3940 [PMID: 28638057]
  142. Science. 2004 Jun 11;304(5677):1634-7 [PMID: 15192219]
  143. Proc Biol Sci. 2014 Apr 30;281(1785):20140028 [PMID: 24789894]
  144. Ecotoxicol Environ Saf. 2020 Jul 15;198:110685 [PMID: 32387845]
  145. Saudi J Biol Sci. 2015 Mar;22(2):123-31 [PMID: 25737642]
  146. Front Plant Sci. 2017 Apr 18;8:537 [PMID: 28458674]
  147. Ecol Appl. 2014 Apr;24(3):560-70 [PMID: 24834741]
  148. PLoS One. 2021 Dec 13;16(12):e0260869 [PMID: 34898612]
  149. Curr Opin Biotechnol. 2009 Dec;20(6):642-50 [PMID: 19875278]
  150. Virulence. 2014;5(7):710-21 [PMID: 25513772]
  151. J Adv Res. 2020 Jul 11;26:69-82 [PMID: 33133684]
  152. Environ Sci Pollut Res Int. 2017 Sep;24(25):20705-20716 [PMID: 28714046]
  153. Microorganisms. 2020 Apr 18;8(4): [PMID: 32325752]
  154. Saudi J Biol Sci. 2022 Jan;29(1):287-295 [PMID: 35002421]
  155. Metabolites. 2021 May 24;11(6): [PMID: 34074032]
  156. Front Plant Sci. 2015 Sep 14;6:722 [PMID: 26442036]
  157. Plant Physiol Biochem. 2016 Feb;99:108-17 [PMID: 26744996]
  158. PLoS One. 2019 Jul 3;14(7):e0219014 [PMID: 31269087]
  159. PLoS One. 2012;7(4):e35498 [PMID: 22545111]
  160. Nat Genet. 2018 Jan;50(1):138-150 [PMID: 29255260]
  161. Plants (Basel). 2022 Mar 02;11(5): [PMID: 35270157]

Word Cloud

Created with Highcharts 10.0.0plantgrowthmicrobesstressesphytomicrobiomerhizospherecommunitiesdefenseagriculturalsectorfoodglobalbioticactrootproductivityalsoMoreovercausingcrucialsustainablealterationsmannerresistanceplantsknowledgeprobioticsforemostcontributingfactorsupplyingscaleplethorawellabioticstressorsmajorconstraintstermsdemandqualitysecurityStressesaffecthealthalternumerousphysiologicalmetabolicprocessesimpacttranscriptomicmetabolomicchangesalterationexudatesaffectingmicrobialSinceevolutionhazardouspesticidesfertilizersexperiencedelevationcostimpedingsoilfertilitytherebyenvironmentalpollutionThereforedevelopsafemeanscropproductionemergencevariouspiecesevidencedepictingabundancestressedconditionsprovedbeneficialoutstandingmaintaininglegacystimulatingsurvivalBeneficialoffergreatpotentialeconomicalpromoteregulatingphytohormonesnutrientacquisitionsiderophoresynthesisinduceantioxidantsystemBesidesacquiredinducedsystemiccounteractsexplorationdeterminegrowth-promotingtraitscolonizationprotectionadversitiescausedintercommunicationsamongdirect/indirectfacilitateformcomplexnetworkcommunicationsessentialpromotingagricultureecologicalengineersenvironmentreviewreviewedbuildingrolestress-mediatedwithinphytomicrobiomesdepictedbiomeconceptinfersdesignfundamentalplant-microbeinteractionsdevelopingPhytomicrobiomecommunications:Novelimplicationsstressmechanismsmetabolomicsmetagenomics

Similar Articles

Cited By