New Algorithm of Traditional Chinese Medicine and Protection of Intangible Cultural Heritage Based on Big Data Deep Learning.

Yanwei Li, Ying Liu, Yulong Wen
Author Information
  1. Yanwei Li: Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072 Sichuan, China.
  2. Ying Liu: Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072 Sichuan, China.
  3. Yulong Wen: TCM Academic Heritage Center, Chengdu University of TCM, Chengdu, 611137 Sichuan, China. ORCID

Abstract

Traditional Chinese medicine (TCM) is a summary of the diagnosis and treatment experience formed by the working people in the long-term struggle against diseases, so it is very important to protect the intangible cultural heritage of TCM. How to extract valuable knowledge accurately and conveniently from the massive medical records of TCM is one of the important issues in the current research on the development of TCM. Due to the large amount of data of TCM medical records, many feature attributes, and diverse patterns, the existing classification technology has high computational complexity, low mining efficiency, and poor universality. Therefore, this paper proposed to quantify the medical records of TCM and obtained the main symptoms according to the improved hierarchical clustering feature selection algorithm. This paper also proposed a support vector machine (SVM) classification method using improved particle swarm algorithm to classify TCM information, which not only improves the efficiency and accuracy of TCM information classification but also discovers the potential dialectical and symptom patterns in diagnosis and treatment, so that the intangible cultural heritage protection of TCM can be developed sustainably. This paper showed that the information acquisition accuracy of the improved algorithm was very high. Before the improved algorithm was used, the accuracy of information mining for TCM was 67.90% at the highest and 65.53% at the lowest, but after using the improved algorithm, the accuracy rate of information mining for TCM was 88.02% at the highest and 82.45% at the lowest. It can be seen that using the improved algorithm to mine TCM information can quickly process effective information.

References

  1. IEEE Trans Pattern Anal Mach Intell. 2017 Feb;39(2):272-286 [PMID: 27019473]
  2. Int Braz J Urol. 2009 Jul-Aug;35(4):396-405 [PMID: 19719854]
  3. J Integr Med. 2017 May;15(3):186-200 [PMID: 28494849]
  4. Science. 2017 Feb 3;355(6324):483-485 [PMID: 28154050]
  5. Zhongguo Zhong Yao Za Zhi. 2019 Jul;44(13):2865-2870 [PMID: 31359702]
  6. J Integr Med. 2017 Jul;15(4):282-287 [PMID: 28659232]
  7. Integr Cancer Ther. 2017 Jun;16(2):147-155 [PMID: 27405933]

MeSH Term

Humans
Medicine, Chinese Traditional
Big Data
Deep Learning
Algorithms
Support Vector Machine

Word Cloud

Created with Highcharts 10.0.0TCMinformationimprovedalgorithmaccuracymedicalrecordsclassificationminingpaperusingcanTraditionalChinesediagnosistreatmentimportantintangibleculturalheritagefeaturepatternshighefficiencyproposedalsohighestlowestmedicinesummaryexperienceformedworkingpeoplelong-termstrugglediseasesprotectextractvaluableknowledgeaccuratelyconvenientlymassiveoneissuescurrentresearchdevelopmentDuelargeamountdatamanyattributesdiverseexistingtechnologycomputationalcomplexitylowpooruniversalityThereforequantifyobtainedmainsymptomsaccordinghierarchicalclusteringselectionsupportvectormachineSVMmethodparticleswarmclassifyimprovesdiscoverspotentialdialecticalsymptomprotectiondevelopedsustainablyshowedacquisitionused6790%6553%rate8802%8245%seenminequicklyprocesseffectiveNewAlgorithmMedicineProtectionIntangibleCulturalHeritageBasedBigDataDeepLearning

Similar Articles

Cited By