Boosting Ring Strain and Lewis Acidity of Borirane: Synthesis, Reactivity and Density Functional Theory Studies of an Uncoordinated Arylborirane Fused to o-Carborane.

Yuxiang Wei, Junyi Wang, Weiguang Yang, Zhenyang Lin, Qing Ye
Author Information
  1. Yuxiang Wei: Department of Chemistry, Southern University of Science and Technology, 518055, Shenzhen (P. R., China.
  2. Junyi Wang: Department of Chemistry, Southern University of Science and Technology, 518055, Shenzhen (P. R., China.
  3. Weiguang Yang: Department of Chemistry, Southern University of Science and Technology, 518055, Shenzhen (P. R., China.
  4. Zhenyang Lin: Department of Chemistry, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong.
  5. Qing Ye: Department of Chemistry, Southern University of Science and Technology, 518055, Shenzhen (P. R., China. ORCID

Abstract

Among the parent borirane, benzoborirene and ortho-dicarbadodecaborane-fused borirane, the latter possesses the highest ring strain and the highest Lewis acidity according to our density functional theory (DFT) studies. The synthesis of this class of compounds is thus considerably challenging. The existing examples require either a strong π-donating group or an extra ligand for B-coordination, which nevertheless suppresses or completely turns off the Lewis acidity. The title compound, which possesses both features, not only allows the 1,2-insertion of P=O, C=O or C≡N to proceed under milder conditions, but also enables the heretofore unknown dearomative 1,4-insertion of Ar-(C=O)- into a B-C bond. The fusion of strained molecular systems to an o-carborane cage shows great promise for boosting both the ring strain and acidity.

Keywords

References

  1. Angew Chem Int Ed Engl. 2005 Dec 1;44(45):7461-3 [PMID: 16231387]
  2. J Am Chem Soc. 2012 Jul 4;134(26):11026-34 [PMID: 22686627]
  3. Chemistry. 2021 Jun 1;27(31):8159-8167 [PMID: 33769625]
  4. Angew Chem Int Ed Engl. 2017 Jul 24;56(31):9198-9201 [PMID: 28574198]
  5. Angew Chem Int Ed Engl. 2010 Oct 25;49(44):8224-7 [PMID: 20857467]
  6. J Am Chem Soc. 2020 Oct 14;142(41):17243-17249 [PMID: 32941023]
  7. J Am Chem Soc. 2009 Jul 1;131(25):8989-99 [PMID: 19480461]
  8. Chem Sci. 2021 Sep 9;12(39):13187-13192 [PMID: 34745550]
  9. Dalton Trans. 2021 Dec 7;50(47):17491-17494 [PMID: 34806110]
  10. J Am Chem Soc. 2009 Oct 14;131(40):14549-59 [PMID: 19769363]
  11. J Am Chem Soc. 2017 Oct 4;139(39):13680-13683 [PMID: 28885010]
  12. J Am Chem Soc. 2021 Jun 16;143(23):8552-8558 [PMID: 33984238]
  13. J Am Chem Soc. 2008 Oct 1;130(39):12898-900 [PMID: 18767853]
  14. Inorg Chem. 2022 Jun 13;61(23):8879-8886 [PMID: 35649271]
  15. Inorg Chem. 2011 Jan 3;50(1):62-71 [PMID: 20712372]
  16. Angew Chem Int Ed Engl. 2017 May 22;56(22):6093-6097 [PMID: 28295925]
  17. Angew Chem Int Ed Engl. 2021 Aug 23;60(35):19008-19012 [PMID: 34060203]
  18. Dalton Trans. 2021 Nov 30;50(46):17150-17155 [PMID: 34780587]
  19. Chem Rev. 2010 Jul 14;110(7):3958-84 [PMID: 20540560]
  20. Chemistry. 2018 Jul 5;24(38):9639-9650 [PMID: 29667258]
  21. Dalton Trans. 2011 Apr 14;40(14):3666-70 [PMID: 21331418]
  22. Chemistry. 2023 Jan 24;29(5):e202203265 [PMID: 36278311]
  23. Nature. 2015 Jun 18;522(7556):327-30 [PMID: 26085273]
  24. Chemistry. 2016 Jun 13;22(25):8596-602 [PMID: 27159272]
  25. J Am Chem Soc. 2017 Feb 8;139(5):1726-1729 [PMID: 28106381]
  26. Angew Chem Int Ed Engl. 2011 May 9;50(20):4704-7 [PMID: 21495129]
  27. Angew Chem Int Ed Engl. 2022 Sep 5;61(36):e202205506 [PMID: 35713166]
  28. J Am Chem Soc. 2012 Dec 12;134(49):20169-77 [PMID: 23171432]
  29. Angew Chem Int Ed Engl. 2018 Jul 9;57(28):8708-8713 [PMID: 29575367]
  30. Dalton Trans. 2014 Apr 7;43(13):4925-34 [PMID: 24231922]
  31. Chem Commun (Camb). 2022 Feb 24;58(17):2818-2821 [PMID: 35050291]
  32. Chem Commun (Camb). 2015 Jan 31;51(9):1627-30 [PMID: 25503081]
  33. J Am Chem Soc. 2020 Mar 25;142(12):5562-5567 [PMID: 32151134]
  34. Inorg Chem. 2022 Nov 14;61(45):18275-18284 [PMID: 36331093]
  35. Chem Commun (Camb). 2015 Dec 7;51(94):16817-20 [PMID: 26434636]

Grants

  1. 22071095/National Natural Science Foundation of China
  2. 20200925152822004/the Stable Support Plan Program of Shenzhen Natural Science Fund
  3. HKUST 16300021/Research Grants Council of Hong Kong

MeSH Term

Lewis Acids
Density Functional Theory
Boranes

Chemicals

Lewis Acids
Boranes

Word Cloud

Created with Highcharts 10.0.0Lewisacidityboriraneringstrainpossesseshighest1C=OAmongparentbenzoborireneortho-dicarbadodecaborane-fusedlatteraccordingdensityfunctionaltheoryDFTstudiessynthesisclasscompoundsthusconsiderablychallengingexistingexamplesrequireeitherstrongπ-donatinggroupextraligandB-coordinationneverthelesssuppressescompletelyturnstitlecompoundfeaturesallows2-insertionP=OC≡Nproceedmilderconditionsalsoenablesheretoforeunknowndearomative4-insertionAr--B-Cbondfusionstrainedmolecularsystemso-carboranecageshowsgreatpromiseboostingBoostingRingStrainAcidityBorirane:SynthesisReactivityDensityFunctionalTheoryStudiesUncoordinatedArylboriraneFusedo-Carboranecarboranefusedboracycles

Similar Articles

Cited By