Untargeted metabolomic analysis of aqueous humor in diabetic macular edema.

Kai On Chu, Tina InLam Chan, Kwok Ping Chan, Yolanda WongYing Yip, Malini Bakthavatsalam, Chi Chiu Wang, Chi Pui Pang, Marten E Brelen
Author Information
  1. Kai On Chu: Department of Ophthalmology and Visual Sciences, the Chinese University of Hong Kong.
  2. Tina InLam Chan: Department of Ophthalmology and Visual Sciences, the Chinese University of Hong Kong.
  3. Kwok Ping Chan: Department of Ophthalmology and Visual Sciences, the Chinese University of Hong Kong.
  4. Yolanda WongYing Yip: Department of Ophthalmology and Visual Sciences, the Chinese University of Hong Kong.
  5. Malini Bakthavatsalam: Department of Ophthalmology and Visual Sciences, the Chinese University of Hong Kong.
  6. Chi Chiu Wang: Department of Obstetrics and Gynaecology, the Chinese University of Hong Kong.
  7. Chi Pui Pang: Department of Ophthalmology and Visual Sciences, the Chinese University of Hong Kong.
  8. Marten E Brelen: Department of Ophthalmology and Visual Sciences, the Chinese University of Hong Kong.

Abstract

Background: The mechanism of diabetic macular edema (DME) was explored by comparing the intraocular metabolite profiles of the aqueous humor of patients with DME to those of diabetic patients without DME using untargeted metabolomic analysis.
Methods: Aqueous samples from 18 type 2 diabetic patients with DME and 18 type 2 diabetic patients without DME used as controls were analyzed using liquid chromatography-mass spectrometry (LCMS). The two groups of patients were age and gender matched and had no systemic diseases other than diabetes mellitus (DM). The metabolites were analyzed using orthogonal partial least square discriminant analysis.
Results: The metabolite profiles in DME patients differed from those in DM controls. This indicates the following metabolic derangements in DME: (a) a higher amount of oxidized fatty acids but a lower amount of endogenous antioxidants (oxidative stress); (b) higher levels of β-glucose and homocysteine but a lower level of sorbitol (hyperglycemia); (c) a higher amount of prostaglandin metabolites (inflammation); (d) higher amounts of acylcarnitines, odd-numbered fatty acids, and 7,8-diaminononanoate (respiration deterioration); (e) a higher amount of neurotransmitter metabolites and homovanillic acid (neuronal damage); (f) a lower amount of extracellular matrix (ECM) constituents (ECM deterioration); and (g) a higher amount of di-amino peptides (microvascular damage).
Conclusions: The change in the metabolic profiles in the aqueous humor of DME patients compared to DM controls without DME indicates that DME patients may have less capability to resist various stresses or damaging pathological conditions, such as oxidative stress, mitochondrial insufficiency, inflammation, and ECM deterioration.

References

  1. Arch Biochem Biophys. 1999 Oct 1;370(1):22-33 [PMID: 10496973]
  2. J Nutr. 2003 Mar;133(3):716-9 [PMID: 12612142]
  3. Arch Physiol Biochem. 2011 Dec;117(5):254-8 [PMID: 22034910]
  4. Int J Vitam Nutr Res. 2004 May;74(3):209-16 [PMID: 15296080]
  5. Mol Med. 2008 Mar-Apr;14(3-4):222-31 [PMID: 18235842]
  6. Prog Retin Eye Res. 2019 Mar;69:57-79 [PMID: 30423446]
  7. Diabetologia. 2011 Mar;54(3):690-8 [PMID: 21116609]
  8. Circ Res. 2005 Nov 25;97(11):1093-107 [PMID: 16306453]
  9. Sci Rep. 2017 Feb 07;7:41984 [PMID: 28169324]
  10. Diabetes. 2016 Apr;65(4):1099-108 [PMID: 26822086]
  11. Cell Biosci. 2014 May 14;4:27 [PMID: 24955234]
  12. J Clin Immunol. 1982 Jan;2(1):35-8 [PMID: 6212592]
  13. J Cell Physiol. 2017 May;232(5):1123-1134 [PMID: 27580405]
  14. FASEB J. 1992 Apr;6(7):2397-404 [PMID: 1563592]
  15. Invest Ophthalmol Vis Sci. 2017 Jul 1;58(9):3496-3505 [PMID: 28715583]
  16. J Nutr. 2009 May;139(5):1031-6 [PMID: 19261731]
  17. Matrix Biol. 2014 Apr;35:8-13 [PMID: 24134926]
  18. Novartis Found Symp. 2007;286:24-38; discussion 38-46, 162-3, 196-203 [PMID: 18269172]
  19. PLoS One. 2013 Sep 27;8(9):e76075 [PMID: 24086689]
  20. Electrophoresis. 2018 May;39(9-10):1233-1240 [PMID: 29292830]
  21. Biochem Biophys Res Commun. 2005 Dec 9;338(1):45-52 [PMID: 16115610]
  22. Diabetes Care. 2009 Sep;32(9):1678-83 [PMID: 19502541]
  23. Am J Physiol Endocrinol Metab. 2014 Jun 15;306(12):E1378-87 [PMID: 24760988]
  24. Can J Physiol Pharmacol. 2015 Dec;93(12):1091-6 [PMID: 26168302]
  25. Diabetologia. 1998 Dec;41(12):1442-50 [PMID: 9867211]
  26. J Proteome Res. 2012 Aug 3;11(8):4034-43 [PMID: 22702841]
  27. Pediatr Res. 1988 Sep;24(3):396-403 [PMID: 3211626]
  28. Prog Retin Eye Res. 2018 Mar;63:20-68 [PMID: 29126927]
  29. Mediators Inflamm. 2016;2016:8606878 [PMID: 26966342]
  30. Diabetologia. 1984 Feb;26(2):134-7 [PMID: 6425101]
  31. Invest Ophthalmol Vis Sci. 2004 Apr;45(4):1232-9 [PMID: 15037592]
  32. Eur Cytokine Netw. 2006 Mar;17(1):4-12 [PMID: 16613757]
  33. Br J Clin Pharmacol. 1999 Nov;48(5):643-8 [PMID: 10594464]
  34. Prog Retin Eye Res. 2013 May;34:19-48 [PMID: 23416119]
  35. Invest Ophthalmol Vis Sci. 2020 Mar 9;61(3):49 [PMID: 32232346]
  36. J Pharm Biomed Anal. 2020 Sep 5;188:113448 [PMID: 32622112]
  37. Metabolomics. 2019 Feb 26;15(3):29 [PMID: 30830501]
  38. Scand J Clin Lab Invest. 2009;69(1):85-91 [PMID: 18830896]
  39. Hypertension. 2010 Oct;56(4):741-9 [PMID: 20837882]
  40. Blood. 2012 Jan 19;119(3):707-16 [PMID: 22049516]
  41. J Nutr. 2010 Jun;140(6):1086-92 [PMID: 20357078]
  42. Invest Ophthalmol Vis Sci. 1983 Jul;24(7):862-7 [PMID: 6862792]
  43. Invest Ophthalmol Vis Sci. 2011 Sep 27;52(10):7464-9 [PMID: 21862642]
  44. J Clin Invest. 2004 Dec;114(11):1531-7 [PMID: 15578083]
  45. J Sep Sci. 2014 Dec;37(23):3473-80 [PMID: 25250898]
  46. Invest Ophthalmol Vis Sci. 2010 Sep;51(9):4416-21 [PMID: 20375324]
  47. Cardiovasc Diabetol. 2013 Jan 30;12:27 [PMID: 23360427]
  48. Int Rev Neurobiol. 2002;50:325-92 [PMID: 12198816]
  49. Biomed Res Int. 2014;2014:801269 [PMID: 25105142]
  50. J Biol Chem. 1999 Aug 13;274(33):23463-7 [PMID: 10438525]
  51. Acta Diabetol. 2017 Jun;54(6):527-533 [PMID: 28349217]
  52. Int J Dev Neurosci. 1997 Oct;15(6):729-38 [PMID: 9402223]
  53. J Chromatogr A. 2014 Aug 1;1353:99-105 [PMID: 24811151]
  54. Allergol Int. 2008 Jun;57(2):115-20 [PMID: 18427164]
  55. J Clin Endocrinol Metab. 2015 May;100(5):2006-14 [PMID: 25794249]
  56. J Biol Chem. 2005 Sep 30;280(39):33588-98 [PMID: 16079133]
  57. J Proteome Res. 2015 Jan 2;14(1):557-66 [PMID: 25361234]
  58. Mol Biosyst. 2011 Jul;7(7):2228-37 [PMID: 21559540]
  59. Biochim Biophys Acta. 2014 May;1840(5):1513-23 [PMID: 24184915]
  60. Diabetes Care. 2008 Jan;31(1):50-6 [PMID: 17898092]
  61. Diabetes. 2005 Jun;54(6):1615-25 [PMID: 15919781]
  62. Open Ophthalmol J. 2010 Sep 03;4:52-9 [PMID: 21293732]
  63. J Leukoc Biol. 2008 Apr;83(4):912-20 [PMID: 18174365]
  64. Nat Rev Cancer. 2014 Jun;14(6):430-9 [PMID: 24827502]

MeSH Term

Humans
Macular Edema
Diabetic Retinopathy
Aqueous Humor
Antioxidants
Homovanillic Acid
Diabetes Mellitus, Type 2
Inflammation
Homocysteine
Sorbitol
Prostaglandins
Fatty Acids
Glucose

Chemicals

Antioxidants
Homovanillic Acid
Homocysteine
Sorbitol
Prostaglandins
Fatty Acids
Glucose

Word Cloud

Created with Highcharts 10.0.0DMEpatientshigheramountdiabeticprofilesaqueoushumorwithoutusinganalysiscontrolsDMmetaboliteslowerdeteriorationECMmacularedemametabolitemetabolomic18type2analyzedindicatesmetabolicfattyacidsoxidativestressinflammationdamageBackground:mechanismexploredcomparingintraocularuntargetedMethods:Aqueoussamplesusedliquidchromatography-massspectrometryLCMStwogroupsagegendermatchedsystemicdiseasesdiabetesmellitusorthogonalpartialleastsquarediscriminantResults:differedfollowingderangementsDME:oxidizedendogenousantioxidantsblevelsβ-glucosehomocysteinelevelsorbitolhyperglycemiacprostaglandindamountsacylcarnitinesodd-numbered78-diaminononanoaterespirationeneurotransmitterhomovanillicacidneuronalfextracellularmatrixconstituentsgdi-aminopeptidesmicrovascularConclusions:changecomparedmaylesscapabilityresistvariousstressesdamagingpathologicalconditionsmitochondrialinsufficiencyUntargeted

Similar Articles

Cited By