The Signaling Pathways Induced by Exosomes in Promoting Diabetic Wound Healing: A Mini-Review.

Yanying Wang, Jiayan Zhu, Jing Chen, Ruojiao Xu, Thomas Groth, Haitong Wan, Guoying Zhou
Author Information
  1. Yanying Wang: The Second Clinical Medical College, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou 310053, China.
  2. Jiayan Zhu: College of Life Science, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou 310053, China.
  3. Jing Chen: College of Life Science, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou 310053, China.
  4. Ruojiao Xu: College of Life Science, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou 310053, China.
  5. Thomas Groth: Department Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany. ORCID
  6. Haitong Wan: College of Life Science, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou 310053, China.
  7. Guoying Zhou: The Second Clinical Medical College, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou 310053, China.

Abstract

Impaired healing of diabetic wounds harms patients' quality of life and even leads to disability and death, which is an urgent issue to be solved clinically. Despite the great progress that has been achieved, it remains a worldwide challenge to develop effective therapeutic treatments for diabetic wounds. Recently, exosomes have attracted special attention because they can be involved in immune response, antigen presentation, cell migration, cell differentiation, tumor invasion and other processes. Meanwhile, exosomes have been proven to hold great potential in the treatment of diabetic wounds. Mechanistic studies of exosomes based on signaling pathways could not only help to uncover the mechanisms by which exosomes promote diabetic wound healing but could also provide a theoretical basis for the clinical application of exosomes. Herein, our mini-review aims to summarize the progress of research on the use of various exosomes derived from different cell types to promote diabetic wound healing, with a focus on the classical signaling pathways, including PI3K/Akt, Wnt, NF-κB, MAPK, Notch, Nrf2, HIF-1α/VEGF and TGF-β/Smad. The results show that exosomes could regulate these signaling pathways to down-regulate inflammation, reduce oxidative stress, increase angiogenesis, promote fibroblast proliferation, induce re-epithelization and inhibit scar formation, making exosomes attractive candidates for the treatment of diabetic wounds.

Keywords

References

  1. Stem Cell Res Ther. 2021 Aug 3;12(1):434 [PMID: 34344478]
  2. Front Immunol. 2021 Jun 16;12:681710 [PMID: 34220830]
  3. Front Immunol. 2017 Jun 01;8:635 [PMID: 28620387]
  4. Exp Clin Endocrinol Diabetes. 2011 Sep;119(8):472-9 [PMID: 21811960]
  5. J Nanobiotechnology. 2021 Jul 7;19(1):202 [PMID: 34233694]
  6. Arch Biochem Biophys. 2020 Mar 15;681:108259 [PMID: 31926164]
  7. Front Endocrinol (Lausanne). 2021 Oct 26;12:756581 [PMID: 34764939]
  8. J Tissue Eng Regen Med. 2020 Jun;14(6):869-883 [PMID: 32336035]
  9. J Cell Physiol. 2019 Apr;234(4):4217-4231 [PMID: 30132863]
  10. J Extracell Vesicles. 2016 Nov 17;5:32570 [PMID: 27863537]
  11. J Mol Med (Berl). 2004 Jul;82(7):434-48 [PMID: 15175863]
  12. J Mol Histol. 2020 Aug;51(4):375-383 [PMID: 32556903]
  13. J Mater Chem B. 2016 Nov 14;4(42):6830-6841 [PMID: 32263577]
  14. Cytokine Growth Factor Rev. 2019 Dec;50:52-59 [PMID: 30890300]
  15. Life Sci. 2020 Oct 15;259:118246 [PMID: 32791151]
  16. Stem Cell Res Ther. 2020 Aug 12;11(1):350 [PMID: 32787917]
  17. Stem Cell Res Ther. 2019 May 21;10(1):142 [PMID: 31113469]
  18. Curr Biol. 2018 Apr 23;28(8):R435-R444 [PMID: 29689228]
  19. Front Physiol. 2019 Jan 28;10:24 [PMID: 30745880]
  20. Stem Cells Transl Med. 2016 Oct;5(10):1425-1439 [PMID: 27388239]
  21. Am J Physiol Gastrointest Liver Physiol. 2022 Apr 1;322(4):G397-G404 [PMID: 35107032]
  22. Int J Stem Cells. 2022 May 30;15(2):164-172 [PMID: 34711700]
  23. Stem Cell Res Ther. 2020 May 24;11(1):198 [PMID: 32448395]
  24. Int Wound J. 2017 Jun;14(3):537-545 [PMID: 27723246]
  25. Biochim Biophys Acta Rev Cancer. 2019 Apr;1871(2):455-468 [PMID: 31047959]
  26. Minerva Med. 2021 Jun;112(3):384-400 [PMID: 33263376]
  27. Int Immunopharmacol. 2020 Feb;79:106109 [PMID: 31865242]
  28. J Clin Oncol. 2005 Feb 10;23(5):1011-27 [PMID: 15585754]
  29. Exp Cell Res. 2018 Sep 15;370(2):333-342 [PMID: 29964051]
  30. Front Pharmacol. 2018 Oct 17;9:1114 [PMID: 30386236]
  31. Wound Repair Regen. 2019 Jul;27(4):324-334 [PMID: 30817065]
  32. J Hematol Oncol. 2018 Jun 14;11(1):82 [PMID: 29898759]
  33. Sci Rep. 2018 Apr 25;8(1):6526 [PMID: 29695738]
  34. Acta Biochim Biophys Sin (Shanghai). 2020 Jun 20;52(6):620-630 [PMID: 32484226]
  35. Angiology. 2017 Mar;68(3):242-250 [PMID: 27225697]
  36. Biochem Biophys Res Commun. 2019 Apr 9;511(3):551-558 [PMID: 30824182]
  37. J Nanobiotechnology. 2021 May 21;19(1):150 [PMID: 34020670]
  38. Biomed Res Int. 2020 Jul 8;2020:2125656 [PMID: 32695810]
  39. Stem Cells. 2017 Jul;35(7):1747-1759 [PMID: 28376567]
  40. Oxid Med Cell Longev. 2021 Feb 4;2021:8852759 [PMID: 33628388]
  41. Mol Med Rep. 2019 Feb;19(2):783-791 [PMID: 30535469]
  42. Stem Cells Int. 2019 Jun 10;2019:2402916 [PMID: 31281370]
  43. Front Microbiol. 2021 Jul 27;12:712588 [PMID: 34385994]
  44. J Am Acad Dermatol. 2014 Jan;70(1):1.e1-18; quiz 19-20 [PMID: 24355275]
  45. Aging (Albany NY). 2020 Jun 22;12(12):12002-12018 [PMID: 32570219]
  46. Diabetes. 2020 Oct;69(10):2157-2169 [PMID: 32763913]
  47. Adv Ther. 2014 Aug;31(8):817-36 [PMID: 25069580]
  48. Bioengineered. 2022 Apr;13(4):8515-8525 [PMID: 35333672]
  49. Sci Rep. 2019 Sep 6;9(1):12861 [PMID: 31492946]
  50. Exp Mol Med. 2018 Apr 13;50(4):1-14 [PMID: 29651102]
  51. J Med Invest. 2018;65(3.4):208-215 [PMID: 30282862]
  52. J Tissue Eng Regen Med. 2019 Apr;13(4):555-568 [PMID: 30656863]
  53. Chem Biol Interact. 2018 Aug 25;292:76-83 [PMID: 30017632]
  54. Hum Exp Toxicol. 2021 Oct;40(10):1612-1623 [PMID: 33779331]
  55. Stem Cell Res Ther. 2020 Mar 4;11(1):97 [PMID: 32127037]
  56. Cells. 2020 May 07;9(5): [PMID: 32392899]
  57. Cell Commun Signal. 2021 May 25;19(1):61 [PMID: 34034759]
  58. Plast Reconstr Surg. 2015 Nov;136(5):1004-1013 [PMID: 26505703]
  59. Acta Pharm Sin B. 2016 Jul;6(4):287-96 [PMID: 27471669]
  60. Mol Ther Nucleic Acids. 2020 Mar 6;19:814-826 [PMID: 31958697]
  61. Stem Cell Res Ther. 2019 Jan 31;10(1):47 [PMID: 30704535]
  62. J Diabetes Res. 2020 May 2;2020:3847171 [PMID: 32455132]
  63. Aquat Toxicol. 2021 Dec;241:106005 [PMID: 34731643]
  64. J Clin Endocrinol Metab. 2015 Oct;100(10):E1280-8 [PMID: 26241326]
  65. Aust J Gen Pract. 2020 May;49(5):250-255 [PMID: 32416652]
  66. Int J Nanomedicine. 2020 Dec 03;15:9717-9743 [PMID: 33299313]
  67. J Dermatol Sci. 2004 Aug;35(2):83-92 [PMID: 15265520]
  68. Small. 2020 Jan;16(3):e1904044 [PMID: 31867895]
  69. J Cell Biochem. 2019 Jun;120(6):10847-10854 [PMID: 30681184]
  70. Cancer Cell. 2018 Oct 8;34(4):536-548 [PMID: 30146333]
  71. Annu Rev Biochem. 2019 Jun 20;88:487-514 [PMID: 31220978]
  72. Acta Biochim Biophys Sin (Shanghai). 2011 Oct;43(10):745-56 [PMID: 21903638]
  73. Biochimie. 2020 Apr - May;171-172:103-109 [PMID: 32109502]
  74. Transl Res. 2021 Oct;236:109-116 [PMID: 34089902]
  75. BMC Endocr Disord. 2020 Jun 22;20(1):89 [PMID: 32571283]
  76. Bosn J Basic Med Sci. 2018 Feb 20;18(1):8-20 [PMID: 29274272]
  77. J Proteome Res. 2017 Jan 6;16(1):170-178 [PMID: 27684284]
  78. Diabetes. 2022 Jul 1;71(7):1562-1578 [PMID: 35472819]
  79. Cold Spring Harb Perspect Biol. 2009 Dec;1(6):a001651 [PMID: 20457564]
  80. Front Immunol. 2021 Feb 03;11:606045 [PMID: 33613526]
  81. Stem Cell Res Ther. 2020 Jun 29;11(1):259 [PMID: 32600435]
  82. Int Immunopharmacol. 2021 Oct;99:107938 [PMID: 34371331]
  83. Diabetes Res Clin Pract. 2019 Apr;150:81-89 [PMID: 30825563]
  84. Int J Mol Sci. 2021 Aug 18;22(16): [PMID: 34445582]
  85. Burns Trauma. 2020 Sep 07;8:tkaa020 [PMID: 32923490]
  86. J Biomed Nanotechnol. 2021 Oct 1;17(10):2021-2033 [PMID: 34706802]
  87. Int J Nanomedicine. 2021 Jan 14;16:371-381 [PMID: 33469291]
  88. J Foot Ankle Res. 2020 Mar 24;13(1):16 [PMID: 32209136]
  89. Sci Rep. 2017 Oct 17;7(1):13321 [PMID: 29042658]
  90. Int J Mol Sci. 2020 Jul 06;21(13): [PMID: 32640524]
  91. ACS Sens. 2019 Feb 22;4(2):488-497 [PMID: 30644736]
  92. Int J Mol Sci. 2016 Dec 11;17(12): [PMID: 27973441]
  93. Stem Cells. 2015 Jul;33(7):2158-68 [PMID: 24964196]
  94. Medicina (Kaunas). 2021 Oct 08;57(10): [PMID: 34684109]
  95. J Cell Mol Med. 2021 Feb;25(4):2148-2162 [PMID: 33350092]
  96. J Wound Care. 2021 Feb 02;30(2):121-129 [PMID: 33573486]

Grants

  1. LQ21H180004/Zhejiang Provincial Natural Science Foundation of China
  2. 81930111/the National Natural Science Foundation of China
  3. 2022JKZKTS20/Research Project of Zhejiang Chinese Medical University
  4. 2022TS002/College level scientific research cultivation project of Zhejiang Chinese Medical University

Word Cloud

Created with Highcharts 10.0.0exosomesdiabetichealingwoundssignalingcellpathwayspromotewoundgreatprogresstreatmentImpairedharmspatients'qualitylifeevenleadsdisabilitydeathurgentissuesolvedclinicallyDespiteachievedremainsworldwidechallengedevelopeffectivetherapeutictreatmentsRecentlyattractedspecialattentioncaninvolvedimmuneresponseantigenpresentationmigrationdifferentiationtumorinvasionprocessesMeanwhileprovenholdpotentialMechanisticstudiesbasedhelpuncovermechanismsalsoprovidetheoreticalbasisclinicalapplicationHereinmini-reviewaimssummarizeresearchusevariousderiveddifferenttypesfocusclassicalincludingPI3K/AktWntNF-κBMAPKNotchNrf2HIF-1α/VEGFTGF-β/Smadresultsshowregulatedown-regulateinflammationreduceoxidativestressincreaseangiogenesisfibroblastproliferationinducere-epithelizationinhibitscarformationmakingattractivecandidatesSignalingPathwaysInducedExosomesPromotingDiabeticWoundHealing:Mini-Reviewfootulcermechanismpathway

Similar Articles

Cited By