The association between early life antibiotic exposure and the gut resistome of young children: a systematic review.

Rebecca M Lebeaux, Despina B Karalis, Jihyun Lee, Hanna C Whitehouse, Juliette C Madan, Margaret R Karagas, Anne G Hoen
Author Information
  1. Rebecca M Lebeaux: Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA. ORCID
  2. Despina B Karalis: Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.
  3. Jihyun Lee: Program in Quantitative Biomedical Sciences, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.
  4. Hanna C Whitehouse: Program in Quantitative Biomedical Sciences, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.
  5. Juliette C Madan: Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.
  6. Margaret R Karagas: Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.
  7. Anne G Hoen: Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.

Abstract

Antimicrobial resistance is a growing public health burden, but little is known about the effects of antibiotic exposure on the gut resistome. As childhood (0-5 years) represents a sensitive window of microbiome development and a time of relatively high antibiotic use, the aims of this systematic review were to evaluate the effects of antibiotic exposure on the gut resistome of young children and identify knowledge gaps. We searched PubMed, Scopus, Web of Science, and the Cochrane Central Register of Controlled Trials. A PICO framework was developed to determine eligibility criteria. Our main outcomes were the mean or median difference in overall resistance gene load and resistome alpha diversity by antibiotic exposure groups. Bias assessment was completed using RoB 2 and ROBINS-I with quality of evidence assessed via the GRADE criteria. From 4885 records identified, 14 studies (3 randomized controlled trials and 11 observational studies) were included in the qualitative review. Eight studies that included information on antibiotic exposure and overall resistance gene load reported no or positive associations. Inconsistent associations were identified for the nine studies that assessed resistome alpha diversity. We identified three main groups of studies based on study design, location, participants, antibiotic exposures, and indication for antibiotics. Overall, the quality of evidence for our main outcomes was rated low or very low, mainly due to potential bias from the selective of reporting results and confounding. We found evidence that antibiotic exposure is associated with changes to the overall gut resistance gene load of children and may influence the diversity of antimicrobial resistance genes. Given the overall quality of the studies, more research is needed to assess how antibiotics impact the resistome of other populations. Nonetheless, this evidence indicates that the gut resistome is worthwhile to consider for antibiotic prescribing practices.

Keywords

References

  1. N Engl J Med. 2020 Nov 12;383(20):1941-1950 [PMID: 33176084]
  2. JAMA. 2006 Sep 13;296(10):1235-41 [PMID: 16968847]
  3. Nat Microbiol. 2016 Mar 07;1:16024 [PMID: 27572443]
  4. J Antimicrob Chemother. 2018 Mar 1;73(3):569-580 [PMID: 29182785]
  5. Nature. 2019 Oct;574(7776):117-121 [PMID: 31534227]
  6. Clin Infect Dis. 2020 Jan 16;70(3):525-527 [PMID: 31149703]
  7. Cell Metab. 2019 Oct 1;30(4):800-823.e7 [PMID: 31523007]
  8. Lancet Infect Dis. 2020 Apr;20(4):e51-e60 [PMID: 32059790]
  9. Pediatr Res. 2020 Sep;88(3):438-443 [PMID: 31954376]
  10. Front Pediatr. 2021 Feb 16;9:618009 [PMID: 33665175]
  11. Nat Med. 2021 Nov;27(11):1885-1892 [PMID: 34789871]
  12. N Engl J Med. 2019 Jun 06;380(23):2271-2273 [PMID: 31167060]
  13. Nat Med. 2019 Sep;25(9):1370-1376 [PMID: 31406349]
  14. Sci Rep. 2019 Jul 23;9(1):10635 [PMID: 31337807]
  15. Gut Microbes. 2016 Sep 2;7(5):443-9 [PMID: 27472377]
  16. Trends Microbiol. 2004 Sep;12(9):412-6 [PMID: 15337162]
  17. Nat Microbiol. 2019 Dec;4(12):2285-2297 [PMID: 31501537]
  18. Gut Microbes. 2021 Jan-Dec;13(1):1-18 [PMID: 33651651]
  19. Acta Paediatr. 2012 Sep;101(9):929-34 [PMID: 22691104]
  20. BMJ. 2021 Mar 29;372:n71 [PMID: 33782057]
  21. Lancet. 2022 Feb 12;399(10325):629-655 [PMID: 35065702]
  22. Cell Host Microbe. 2015 May 13;17(5):690-703 [PMID: 25974306]
  23. Clin Infect Dis. 2020 Mar 17;70(7):1501-1508 [PMID: 31633161]
  24. J Infect Dis. 2021 Oct 13;224(7):1236-1246 [PMID: 32239170]
  25. Pediatr Infect Dis J. 2018 Jan;37(1):52-58 [PMID: 28746259]
  26. EMBO Mol Med. 2017 Dec;9(12):1732-1741 [PMID: 29030459]
  27. mSystems. 2018 Jan 9;3(1): [PMID: 29359195]
  28. Pediatrics. 2017 Sep;140(3): [PMID: 28808074]
  29. BMC Pediatr. 2019 Jan 16;19(1):23 [PMID: 30651086]
  30. PLoS One. 2020 Jun 18;15(6):e0234751 [PMID: 32555719]
  31. Gut Microbes. 2021 Jan-Dec;13(1):1940792 [PMID: 34264786]
  32. Front Microbiol. 2018 Jun 25;9:1361 [PMID: 29988506]
  33. BMC Microbiol. 2021 Jul 2;21(1):201 [PMID: 34215179]
  34. Eur J Clin Pharmacol. 2013 Mar;69(3):581-8 [PMID: 22791273]
  35. Lancet. 2005 Feb 12-18;365(9459):579-87 [PMID: 15708101]
  36. Cell Host Microbe. 2018 Jul 11;24(1):146-154.e4 [PMID: 30001517]
  37. J Clin Epidemiol. 2013 Jul;66(7):736-42; quiz 742.e1-5 [PMID: 23623694]
  38. Acta Paediatr. 2019 Nov;108(11):2075-2082 [PMID: 31132164]
  39. Genome Med. 2020 Sep 28;12(1):82 [PMID: 32988391]
  40. Clin Infect Dis. 2020 Dec 31;71(11):2858-2868 [PMID: 31832638]
  41. Nat Commun. 2018 Sep 24;9(1):3891 [PMID: 30250208]
  42. N Engl J Med. 2022 Jan 20;386(3):220-229 [PMID: 35045228]
  43. Nat Rev Microbiol. 2013 Apr;11(4):277-84 [PMID: 23474681]
  44. Proc Natl Acad Sci U S A. 2018 Dec 18;115(51):12868-12871 [PMID: 30559204]
  45. Res Synth Methods. 2021 Jan;12(1):55-61 [PMID: 32336025]
  46. AMB Express. 2021 Aug 16;11(1):116 [PMID: 34398323]
  47. BMJ. 2016 Oct 12;355:i4919 [PMID: 27733354]
  48. Nat Microbiol. 2020 Mar;5(3):430-442 [PMID: 31844297]
  49. Trials. 2023 Jan 3;24(1):5 [PMID: 36597115]
  50. BMC Infect Dis. 2020 Apr 28;20(1):312 [PMID: 32345218]
  51. mSphere. 2018 Sep 26;3(5): [PMID: 30258040]
  52. Clin Infect Dis. 2021 Oct 5;73(7):1292-1295 [PMID: 34037753]
  53. Microbiome. 2021 May 18;9(1):113 [PMID: 34006335]
  54. Cell Host Microbe. 2021 Jun 9;29(6):975-987.e4 [PMID: 33887206]
  55. Nat Rev Genet. 2019 Jun;20(6):356-370 [PMID: 30886350]
  56. Trop Med Int Health. 2021 Oct;26(10):1153-1163 [PMID: 34139031]
  57. BMJ. 2019 Aug 28;366:l4898 [PMID: 31462531]
  58. Antimicrob Resist Infect Control. 2019 Aug 14;8:131 [PMID: 31423298]
  59. Pathog Glob Health. 2015;109(7):309-18 [PMID: 26343252]
  60. Science. 2006 Jan 20;311(5759):374-7 [PMID: 16424339]
  61. Nat Commun. 2022 Feb 16;13(1):893 [PMID: 35173154]
  62. J Pediatr. 2020 Nov;226:315-316 [PMID: 32710911]
  63. Lancet. 2016 Jan 9;387(10014):168-75 [PMID: 26603918]
  64. PeerJ. 2017 Jan 25;5:e2928 [PMID: 28149696]
  65. Sci Transl Med. 2016 Jun 15;8(343):343ra81 [PMID: 27306663]
  66. BMJ Glob Health. 2019 Feb 27;4(1):e001241 [PMID: 30899565]
  67. Syst Rev. 2016 Dec 5;5(1):210 [PMID: 27919275]
  68. Microbiome. 2015 Jun 25;3:27 [PMID: 26113976]
  69. Gut Microbes. 2020 Nov 9;12(1):1700755 [PMID: 31942825]
  70. Front Pediatr. 2018 Nov 16;6:347 [PMID: 30505830]
  71. BMJ. 2021 Mar 29;372:n160 [PMID: 33781993]
  72. Pediatrics. 2014 Oct;134(4):e956-65 [PMID: 25225144]
  73. Nat Protoc. 2020 Mar;15(3):799-821 [PMID: 31942082]
  74. Nat Rev Microbiol. 2015 Feb;13(2):116-23 [PMID: 25534811]
  75. Clin Infect Dis. 2020 Dec 31;71(11):2869-2871 [PMID: 31832637]
  76. Lancet Glob Health. 2019 Dec;7(12):e1717-e1727 [PMID: 31708152]
  77. Nat Rev Immunol. 2013 Nov;13(11):790-801 [PMID: 24096337]

Grants

  1. R01 LM012723/NLM NIH HHS
  2. T32 AI007519/NIAID NIH HHS

MeSH Term

Child
Humans
Child, Preschool
Anti-Bacterial Agents
Gastrointestinal Microbiome

Chemicals

Anti-Bacterial Agents

Word Cloud

Created with Highcharts 10.0.0antibioticresistomeresistanceexposurestudiesgutreviewoverallevidencesystematicchildrenmaingeneloaddiversityqualityidentifiedeffectsyoungcriteriaoutcomesalphagroupsassessedincludedassociationsantibioticslowgenesAntimicrobialgrowingpublichealthburdenlittleknownchildhood0-5 yearsrepresentssensitivewindowmicrobiomedevelopmenttimerelativelyhighuseaimsevaluateidentifyknowledgegapssearchedPubMedScopusWebScienceCochraneCentralRegisterControlledTrialsPICOframeworkdevelopeddetermineeligibilitymeanmediandifferenceBiasassessmentcompletedusingRoB2ROBINS-IviaGRADE4885records143randomizedcontrolledtrials11observationalqualitativeEightinformationreportedpositiveInconsistentninethreebasedstudydesignlocationparticipantsexposuresindicationOverallratedmainlyduepotentialbiasselectivereportingresultsconfoundingfoundassociatedchangesmayinfluenceantimicrobialGivenresearchneededassessimpactpopulationsNonethelessindicatesworthwhileconsiderprescribingpracticesassociationearlylifechildren:Antibiotics

Similar Articles

Cited By