Machine-Learning-Assisted Analysis of TCR Profiling Data Unveils Cross-Reactivity between SARS-CoV-2 and a Wide Spectrum of Pathogens and Other Diseases.

Georgios K Georgakilas, Achilleas P Galanopoulos, Zafeiris Tsinaris, Maria Kyritsi, Varvara A Mouchtouri, Matthaios Speletas, Christos Hadjichristodoulou
Author Information
  1. Georgios K Georgakilas: Laboratory of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, 41222 Larisa, Greece.
  2. Achilleas P Galanopoulos: Laboratory of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, 41222 Larisa, Greece.
  3. Zafeiris Tsinaris: Laboratory of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, 41222 Larisa, Greece.
  4. Maria Kyritsi: Laboratory of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, 41222 Larisa, Greece. ORCID
  5. Varvara A Mouchtouri: Laboratory of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, 41222 Larisa, Greece. ORCID
  6. Matthaios Speletas: Department of Immunology & Histocompatibility, Faculty of Medicine, University of Thessaly, 41500 Larisa, Greece. ORCID
  7. Christos Hadjichristodoulou: Laboratory of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, 41222 Larisa, Greece.

Abstract

During the last two years, the emergence of SARS-CoV-2 has led to millions of deaths worldwide, with a devastating socio-economic impact on a global scale. The scientific community's focus has recently shifted towards the association of the T cell immunological repertoire with COVID-19 progression and severity, by utilising T cell receptor sequencing (TCR-Seq) assays. The Multiplexed Identification of T cell Receptor Antigen (MIRA) dataset, which is a subset of the immunoACCESS study, provides thousands of TCRs that can specifically recognise SARS-CoV-2 epitopes. Our study proposes a novel Machine Learning (ML)-assisted approach for analysing TCR-Seq data from the antigens' point of view, with the ability to unveil key antigens that can accurately distinguish between MIRA COVID-19-convalescent and healthy individuals based on differences in the triggered immune response. Some SARS-CoV-2 antigens were found to exhibit equal levels of recognition by MIRA TCRs in both convalescent and healthy cohorts, leading to the assumption of putative cross-reactivity between SARS-CoV-2 and other infectious agents. This hypothesis was tested by combining MIRA with other public TCR profiling repositories that host assays and sequencing data concerning a plethora of pathogens. Our study provides evidence regarding putative cross-reactivity between SARS-CoV-2 and a wide spectrum of pathogens and diseases, with and Influenza virus exhibiting the highest levels of cross-reactivity. These results can potentially shift the emphasis of immunological studies towards an increased application of TCR profiling assays that have the potential to uncover key mechanisms of cell-mediated immune response against pathogens and diseases.

Keywords

References

  1. Sci Immunol. 2017 Aug 4;2(14): [PMID: 28778905]
  2. J Immunol. 2010 Mar 15;184(6):2825-38 [PMID: 20164414]
  3. Sci Rep. 2021 Jul 12;11(1):14275 [PMID: 34253751]
  4. Front Immunol. 2021 Sep 20;12:742631 [PMID: 34616404]
  5. BMC Microbiol. 2003 Sep 21;3:20 [PMID: 14499001]
  6. J Autoimmun. 2001 May;16(3):337-40 [PMID: 11334501]
  7. PLoS One. 2015 Oct 28;10(10):e0141561 [PMID: 26509579]
  8. Vaccine. 2021 Oct 1;39(41):6019-6024 [PMID: 34531078]
  9. Travel Med Infect Dis. 2020 Sep - Oct;37:101872 [PMID: 32896672]
  10. Nature. 2020 Aug;584(7821):457-462 [PMID: 32668444]
  11. Immunity. 2009 Dec 18;31(6):897-908 [PMID: 20064448]
  12. Nucleic Acids Res. 2015 Jan;43(Database issue):D413-22 [PMID: 25378316]
  13. J Biol Chem. 2012 Jan 6;287(2):1168-77 [PMID: 22102287]
  14. Vaccines (Basel). 2020 Aug 23;8(3): [PMID: 32842505]
  15. Sci Rep. 2021 Feb 26;11(1):4741 [PMID: 33637783]
  16. J Immunol. 2010 Dec 1;185(11):6753-64 [PMID: 21048112]
  17. J Clin Immunol. 2021 Aug;41(6):1131-1145 [PMID: 33950324]
  18. PLoS Pathog. 2021 Sep 24;17(9):e1009958 [PMID: 34559854]
  19. Clin Microbiol Infect. 2019 Dec;25(12):1473-1478 [PMID: 31055165]
  20. Nat Rev Immunol. 2021 Oct;21(10):626-636 [PMID: 34373623]
  21. Cell. 2020 Oct 1;183(1):158-168.e14 [PMID: 32979941]
  22. Nature. 2020 Jul;583(7815):290-295 [PMID: 32422645]
  23. J Investig Med High Impact Case Rep. 2021 Jan-Dec;9:23247096211040626 [PMID: 34428954]
  24. Immunol Rev. 2015 Mar;264(1):74-87 [PMID: 25703553]
  25. Cell Host Microbe. 2018 Jan 10;23(1):89-100.e5 [PMID: 29324233]
  26. Autoimmun Rev. 2020 Aug;19(8):102597 [PMID: 32535093]
  27. Bioinformatics. 2019 Dec 15;35(24):5323-5325 [PMID: 31240309]
  28. Front Immunol. 2018 Dec 04;9:2869 [PMID: 30564249]
  29. Med Hypotheses. 2020 Apr 22;140:109752 [PMID: 32361099]
  30. Autoimmun Rev. 2021 Apr;20(4):102792 [PMID: 33610751]
  31. Oxf Open Immunol. 2020 Dec 29;2(1):iqaa007 [PMID: 33575657]
  32. Cell. 2020 Nov 12;183(4):996-1012.e19 [PMID: 33010815]
  33. Nucleic Acids Res. 2000 Jan 1;28(1):235-42 [PMID: 10592235]
  34. Nat Cancer. 2021 Dec;2(12):1321-1337 [PMID: 35121900]
  35. Science. 2014 Sep 26;345(6204):1251086 [PMID: 25258085]
  36. Curr Opin Rheumatol. 2007 Nov;19(6):636-43 [PMID: 17917546]
  37. Nucleic Acids Res. 2020 Jan 8;48(D1):D1057-D1062 [PMID: 31588507]
  38. Immunity. 2009 Dec 18;31(6):885-96 [PMID: 20064447]
  39. N Engl J Med. 2022 Jan 27;386(4):305-315 [PMID: 34937145]
  40. Emerg Infect Dis. 2021 Jan;27(1): [PMID: 33261718]
  41. Adv Physiol Educ. 2013 Dec;37(4):273-83 [PMID: 24292902]
  42. Genomics. 2021 Mar;113(2):456-462 [PMID: 33383142]
  43. J Clean Prod. 2021 Aug 20;312:127705 [PMID: 36471816]
  44. Immunobiology. 2021 Jan;226(1):152052 [PMID: 33418320]
  45. N Engl J Med. 2022 Feb 10;386(6):592-593 [PMID: 34914869]
  46. N Engl J Med. 2021 Nov 18;385(21):1941-1950 [PMID: 34706189]
  47. J Exp Med. 1998 Nov 2;188(9):1705-15 [PMID: 9802982]
  48. J Virol. 2014 Oct;88(19):11034-44 [PMID: 25056892]
  49. BMJ Evid Based Med. 2020 Dec 11;: [PMID: 33310766]
  50. Nat Immunol. 2022 Feb;23(2):194-202 [PMID: 35105985]
  51. Genome Res. 2009 Sep;19(9):1639-45 [PMID: 19541911]
  52. Trop Med Int Health. 2020 Mar;25(3):278-280 [PMID: 32052514]
  53. Chest. 2020 Oct;158(4):1364-1375 [PMID: 32533957]
  54. Proc Natl Acad Sci U S A. 2020 Jul 28;117(30):17720-17726 [PMID: 32647056]
  55. Nature. 2020 Nov;587(7833):270-274 [PMID: 32726801]
  56. J Leukoc Biol. 2014 Mar;95(3):405-16 [PMID: 24212098]
  57. Nat Rev Immunol. 2020 Jun;20(6):375-388 [PMID: 32132681]
  58. Science. 2020 Oct 2;370(6512):89-94 [PMID: 32753554]
  59. Sci Adv. 2020 Aug 05;6(32):eabc1463 [PMID: 32923613]
  60. Immunol Rev. 2010 May;235(1):244-66 [PMID: 20536568]
  61. Nat Immunol. 2003 Mar;4(3):241-7 [PMID: 12563259]
  62. J Exp Med. 2005 Mar 7;201(5):675-80 [PMID: 15753202]
  63. J Immunol. 2009 Feb 15;182(4):1962-71 [PMID: 19201849]
  64. Front Immunol. 2018 Jun 27;9:1453 [PMID: 29997621]
  65. Elife. 2021 Jan 05;10: [PMID: 33399535]
  66. Front Cell Dev Biol. 2021 Nov 03;9:696662 [PMID: 34805136]
  67. J Clin Pathol. 2021 Sep;74(9):614 [PMID: 32907911]
  68. Bioinformatics. 2017 Sep 15;33(18):2924-2929 [PMID: 28481982]
  69. Nat Rev Immunol. 2020 Aug;20(8):457-458 [PMID: 32636479]
  70. Crit Care. 2020 Nov 23;24(1):657 [PMID: 33228750]
  71. J Clin Invest. 2004 Nov;114(9):1290-8 [PMID: 15520861]
  72. Nucleic Acids Res. 2021 Jan 8;49(D1):D480-D489 [PMID: 33237286]
  73. Best Pract Res Clin Anaesthesiol. 2021 Oct;35(3):293-306 [PMID: 34511220]
  74. J Exp Med. 1999 Nov 1;190(9):1319-28 [PMID: 10544203]
  75. Immunity. 2020 Dec 15;53(6):1245-1257.e5 [PMID: 33326767]
  76. Ann Med Surg (Lond). 2021 Nov;71:103027 [PMID: 34777794]
  77. Immunity. 1999 Jul;11(1):45-56 [PMID: 10435578]
  78. Sci Rep. 2021 Aug 9;11(1):16144 [PMID: 34373540]
  79. Asian Pac J Allergy Immunol. 2020 Sep;38(3):150-161 [PMID: 32686943]
  80. Cell Rep Med. 2021 Feb 16;2(2):100192 [PMID: 33495756]
  81. Nat Rev Rheumatol. 2020 Aug;16(8):413-414 [PMID: 32499548]
  82. Immunol Cell Biol. 2015 Mar;93(3):233-44 [PMID: 25559622]
  83. Crit Rev Immunol. 2012;32(4):349-72 [PMID: 23237510]

Word Cloud

Created with Highcharts 10.0.0SARS-CoV-2MIRATcellcross-reactivitypathogensassaysstudycanTCRdiseasestowardsimmunologicalCOVID-19receptorsequencingTCR-SeqdatasetprovidesTCRsMachineLearningdatakeyantigenshealthyimmuneresponselevelsputativeprofilinglasttwoyearsemergenceledmillionsdeathsworldwidedevastatingsocio-economicimpactglobalscalescientificcommunity'sfocusrecentlyshiftedassociationrepertoireprogressionseverityutilisingMultiplexedIdentificationReceptorAntigensubsetimmunoACCESSthousandsspecificallyrecogniseepitopesproposesnovelML-assistedapproachanalysingantigens'pointviewabilityunveilaccuratelydistinguishCOVID-19-convalescentindividualsbaseddifferencestriggeredfoundexhibitequalrecognitionconvalescentcohortsleadingassumptioninfectiousagentshypothesistestedcombiningpublicrepositorieshostconcerningplethoraevidenceregardingwidespectrumInfluenzavirusexhibitinghighestresultspotentiallyshiftemphasisstudiesincreasedapplicationpotentialuncovermechanismscell-mediatedMachine-Learning-AssistedAnalysisProfilingDataUnveilsCross-ReactivityWideSpectrumPathogensDiseasesphenomenon

Similar Articles

Cited By