In Silico Structural Analysis of Serine Carboxypeptidase 314, a Potential Drug Target in Infections.

Pablo A Madero-Ayala, Rosa E Mares-Alejandre, Marco A Ramos-Ibarra
Author Information
  1. Pablo A Madero-Ayala: Biotechnology and Biosciences Research Group, Faculty of Chemical Sciences and Engineering, Autonomous University of Baja California, Tijuana 22390, Mexico.
  2. Rosa E Mares-Alejandre: Biotechnology and Biosciences Research Group, Faculty of Chemical Sciences and Engineering, Autonomous University of Baja California, Tijuana 22390, Mexico. ORCID
  3. Marco A Ramos-Ibarra: Biotechnology and Biosciences Research Group, Faculty of Chemical Sciences and Engineering, Autonomous University of Baja California, Tijuana 22390, Mexico. ORCID

Abstract

, also known as the "brain-eating" amoeba, is a free-living protozoan that resides in freshwater bodies. This pathogenic amoeba infects humans as a casual event when swimming in contaminated water. Upon inhalation, invades the central nervous system and causes primary amoebic meningoencephalitis (PAM), a rapidly progressive and often fatal disease. Although PAM is considered rare, reducing its case fatality rate compels the search for pathogen-specific proteins with a structure-function relationship that favors their application as targets for discovering new or improved drugs against infections. Herein, we report a computational approach to study the structural features of 314 (a serine carboxypeptidase that is a virulence-related protein in infections) and assess its potential as a drug target, using bioinformatics tools and in silico molecular docking experiments. Our findings suggest that 314 has a ligand binding site suitable for the structure-based design of specific inhibitors. This study represents a further step toward postulating a reliable therapeutic target to treat PAM with drugs specifically aimed at blocking the pathogen proliferation by inhibiting protein function.

Keywords

References

  1. J Biol Chem. 2014 Apr 25;289(17):11592-11600 [PMID: 24599961]
  2. Nucleic Acids Res. 2013 Jan;41(Database issue):D1096-103 [PMID: 23087378]
  3. Nucleic Acids Res. 2020 Jan 8;48(D1):D265-D268 [PMID: 31777944]
  4. J Comput Chem. 2004 Oct;25(13):1605-12 [PMID: 15264254]
  5. Nucleic Acids Res. 2021 Jul 2;49(W1):W425-W430 [PMID: 33963867]
  6. Proteomics Clin Appl. 2014 Jun;8(5-6):327-37 [PMID: 24470285]
  7. Crit Rev Biochem Mol Biol. 2020 Apr;55(2):111-165 [PMID: 32290726]
  8. Sci Rep. 2019 Nov 5;9(1):16040 [PMID: 31690847]
  9. Mol Biochem Parasitol. 2003 Sep;131(1):11-23 [PMID: 12967708]
  10. Nucleic Acids Res. 2021 Jan 8;49(D1):D458-D460 [PMID: 33104802]
  11. Physiol Plant. 2012 May;145(1):18-27 [PMID: 21985675]
  12. Cell Mol Life Sci. 2014 Jun;71(11):2017-32 [PMID: 24337808]
  13. Mol Syst Biol. 2011 Oct 11;7:539 [PMID: 21988835]
  14. J Mol Graph. 1996 Feb;14(1):33-8, 27-8 [PMID: 8744570]
  15. Bioinformatics. 2016 Jul 15;32(14):2216-8 [PMID: 27153651]
  16. Infect Immun. 1992 Jun;60(6):2418-24 [PMID: 1587609]
  17. Protein Eng. 1992 Apr;5(3):197-211 [PMID: 1409539]
  18. Exp Parasitol. 2018 Apr;187:1-11 [PMID: 29501696]
  19. BMC Genomics. 2014 Jun 19;15:496 [PMID: 24950717]
  20. Protein Eng. 1989 Nov;3(2):95-103 [PMID: 2594728]
  21. Immunol Rev. 1998 Feb;161:129-41 [PMID: 9553770]
  22. Nucleic Acids Res. 2004 Jul 1;32(Web Server issue):W327-31 [PMID: 15215404]
  23. Antimicrob Agents Chemother. 2015 Nov;59(11):6677-81 [PMID: 26259797]
  24. J Comput Chem. 2009 Dec;30(16):2785-91 [PMID: 19399780]
  25. Nucleic Acids Res. 2021 Jan 8;49(D1):D344-D354 [PMID: 33156333]
  26. J Biol Chem. 2020 Sep 4;295(36):12605-12617 [PMID: 32647007]
  27. Biochemistry. 2002 Oct 8;41(40):12043-50 [PMID: 12356304]
  28. Nat Biotechnol. 2022 Jul;40(7):1023-1025 [PMID: 34980915]
  29. Nucleic Acids Res. 2011 Jan;39(Database issue):D612-9 [PMID: 20974635]
  30. Biochemistry. 1994 Sep 20;33(37):11106-20 [PMID: 7727362]
  31. Clin Transl Sci. 2021 May;14(3):791-805 [PMID: 33650319]
  32. J Transl Med. 2016 May 31;14(1):153 [PMID: 27246731]
  33. Methods Enzymol. 1997;277:396-404 [PMID: 9379925]
  34. Curr Infect Dis Rep. 2016 Sep;18(10):31 [PMID: 27614893]
  35. Nucleic Acids Res. 2019 Jul 2;47(W1):W402-W407 [PMID: 31251384]
  36. J Comput Chem. 2010 Jan 30;31(2):455-61 [PMID: 19499576]
  37. Front Mol Biosci. 2016 Oct 25;3:68 [PMID: 27826550]
  38. Methods Enzymol. 1994;244:19-61 [PMID: 7845208]
  39. Bioinformatics. 2013 Oct 15;29(20):2588-95 [PMID: 23975762]
  40. Rocz Akad Med Bialymst. 1998;43:39-55 [PMID: 9972042]
  41. Nucleic Acids Res. 2019 Jul 2;47(W1):W408-W413 [PMID: 31045208]
  42. Sci Rep. 2021 Sep 21;11(1):18745 [PMID: 34548523]
  43. Sci Rep. 2016 May 24;6:26536 [PMID: 27216779]
  44. Nucleic Acids Res. 2007 Jul;35(Web Server issue):W407-10 [PMID: 17517781]
  45. BMC Biol. 2021 Jul 22;19(1):142 [PMID: 34294116]
  46. Nucleic Acids Res. 2021 Jan 8;49(D1):D412-D419 [PMID: 33125078]
  47. Clin Pharmacol Drug Dev. 2016 Jan;5(1):57-68 [PMID: 27119579]
  48. PLoS One. 2021 Mar 24;16(3):e0241738 [PMID: 33760815]
  49. Clin Exp Pharmacol Physiol. 2020 Feb;47(2):199-212 [PMID: 31612525]
  50. Nucleic Acids Res. 2021 Jul 2;49(W1):W216-W227 [PMID: 33849055]
  51. J Biochem. 1999 Jul;126(1):1-6 [PMID: 10393313]
  52. Int J Mol Sci. 2021 Dec 09;22(24): [PMID: 34948055]
  53. Nucleic Acids Res. 2022 Jan 7;50(D1):D898-D911 [PMID: 34718728]
  54. Nucleic Acids Res. 2021 Jan 8;49(D1):D480-D489 [PMID: 33237286]
  55. Clin Infect Dis. 2021 Jul 1;73(1):e19-e27 [PMID: 32369575]
  56. mSphere. 2021 Aug 25;6(4):e0063721 [PMID: 34378985]
  57. PLoS Negl Trop Dis. 2014 Aug 14;8(8):e3017 [PMID: 25121759]
  58. Int Immunopharmacol. 2010 Jan;10(1):134-9 [PMID: 19800993]
  59. FEMS Immunol Med Microbiol. 2007 Jun;50(1):1-26 [PMID: 17428307]
  60. Biomol Concepts. 2010 Oct 1;1(3-4):305-22 [PMID: 25962005]
  61. J Med Chem. 2012 Sep 13;55(17):7636-49 [PMID: 22861813]
  62. Structure. 1995 Nov 15;3(11):1249-59 [PMID: 8591035]
  63. J Biol Chem. 1995 Nov 3;270(44):26441-5 [PMID: 7592859]
  64. Life Sci Alliance. 2019 Sep 30;2(5): [PMID: 31570514]
  65. Nucleic Acids Res. 2013 Jul;41(Web Server issue):W303-7 [PMID: 23761453]
  66. Nucleic Acids Res. 2018 Jan 4;46(D1):D624-D632 [PMID: 29145643]
  67. Bioinformatics. 2017 Nov 01;33(21):3387-3395 [PMID: 29036616]
  68. J Mol Biol. 1990 Oct 5;215(3):403-10 [PMID: 2231712]
  69. Protein Sci. 2018 Jan;27(1):14-25 [PMID: 28710774]
  70. Biochem Pharmacol. 2020 Jul;177:113980 [PMID: 32305437]
  71. J Biochem. 1998 Apr;123(4):701-6 [PMID: 9538264]

Grants

  1. CF-2019/01-170715/Consejo Nacional de Ciencia y Tecnología
  2. CPI/300/735/E/Autonomous University of Baja California

MeSH Term

Humans
Central Nervous System Protozoal Infections
Molecular Docking Simulation
Ligands
Naegleria fowleri
Water

Chemicals

serine carboxypeptidase
Ligands
Water

Word Cloud

Created with Highcharts 10.0.0PAM314proteinamoebadrugsinfectionsstudyserinecarboxypeptidasetargetsilicoStructuralAnalysisalsoknown"brain-eating"free-livingprotozoanresidesfreshwaterbodiespathogenicinfectshumanscasualeventswimmingcontaminatedwaterUponinhalationinvadescentralnervoussystemcausesprimaryamoebicmeningoencephalitisrapidlyprogressiveoftenfataldiseaseAlthoughconsideredrarereducingcasefatalityratecompelssearchpathogen-specificproteinsstructure-functionrelationshipfavorsapplicationtargetsdiscoveringnewimprovedHereinreportcomputationalapproachstructuralfeaturesvirulence-relatedassesspotentialdrugusingbioinformaticstoolsmoleculardockingexperimentsfindingssuggestligandbindingsitesuitablestructure-baseddesignspecificinhibitorsrepresentssteptowardpostulatingreliabletherapeutictreatspecificallyaimedblockingpathogenproliferationinhibitingfunctionSilicoSerineCarboxypeptidasePotentialDrugTargetInfectionsNaegleriafowleriProteincathepsinA-likestudies

Similar Articles

Cited By