Aluminum, Arsenic, Beryllium, Cadmium, Chromium, Cobalt, Copper, Iron, Lead, Mercury, Molybdenum, Nickel, Platinum, Thallium, Titanium, Vanadium, and Zinc: Molecular Aspects in Experimental Liver Injury.

Rolf Teschke
Author Information
  1. Rolf Teschke: Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Klinikum Hanau, Academic Teaching Hospital of the Medical Faculty, Goethe University Frankfurt, 63450 Hanau, Germany. ORCID

Abstract

Experimental liver injury with hepatocelluar necrosis and abnormal liver tests is caused by exposure to heavy metals (HMs) like aluminum, arsenic, beryllium, cadmium, chromium, cobalt, copper, iron, lead, mercury, molybdenum, nickel, platinum, thallium, titanium, vanadium, and zinc. As pollutants, HMs disturb the ecosystem, and as these substances are toxic, they may affect the health of humans and animals. HMs are not biodegradable and may be deposited preferentially in the liver. The use of animal models can help identify molecular and mechanistic steps leading to the injury. HMs commonly initiate hepatocellular overproduction of ROS (reactive oxygen species) due to oxidative stress, resulting in covalent binding of radicals to macromolecular proteins or lipids existing in membranes of subcellular organelles. Liver injury is facilitated by iron via the Fenton reaction, providing ROS, and is triggered if protective antioxidant systems are exhausted. Ferroptosis syn pyroptosis was recently introduced as mechanistic concept in explanations of nickel (Ni) liver injury. NiCl causes increased iron deposition in the liver, upregulation of cyclooxygenase 2 (COX-2) protein and mRNA expression levels, downregulation of glutathione eroxidase 4 (GPX4), ferritin heavy chain 1 (FTH1), nuclear receptor coactivator 4 (NCOA4) protein, and mRNA expression levels. Nickel may cause hepatic injury through mitochondrial damage and ferroptosis, defined as mechanism of iron-dependent cell death, similar to glutamate-induced excitotoxicity but likely distinct from apoptosis, necrosis, and autophagy. Under discussion were additional mechanistic concepts of hepatocellular uptake and biliary excretion of mercury in exposed animals. For instance, the organic anion transporter 3 (Oat3) and the multidrug resistance-associated protein 2 (Mrp2) were involved in the hepatic handling of mercury. Mercury treatment modified the expression of Mrp2 and Oat3 as assessed by immunoblotting, partially explaining its impaired biliary excretion. Concomitantly, a decrease in Oat3 abundance in the hepatocyte plasma membranes was observed that limits the hepatic uptake of mercury ions. Most importantly and shown for the first time in liver injury caused by HMs, titanium changed the diversity of gut microbiota and modified their metabolic functions, leading to increased generation of lipopolysaccharides (LPS). As endotoxins, LPS may trigger and perpetuate the liver injury at the level of gut-liver. In sum, mechanistic and molecular steps of experimental liver injury due to HM administration are complex, with ROS as the key promotional compound. However, additional concepts such as iron used in the Fenton reaction, ferroptosis, modification of transporter systems, and endotoxins derived from diversity of intestinal bacteria at the gut-liver level merit further consideration.

Keywords

References

  1. Vet World. 2016 Jun;9(6):660-71 [PMID: 27397992]
  2. Front Pharmacol. 2022 Apr 12;13:876550 [PMID: 35496312]
  3. Toxicol Ind Health. 2016 Feb;32(2):235-45 [PMID: 24081637]
  4. Emerg Med Int. 2022 Jan 11;2022:1480553 [PMID: 35070453]
  5. Interdiscip Toxicol. 2015 Jun;8(2):55-64 [PMID: 27486361]
  6. Front Cell Infect Microbiol. 2022 Jul 27;12:922511 [PMID: 35967872]
  7. Indian J Med Res. 2007 Dec;126(6):518-27 [PMID: 18219078]
  8. Environ Toxicol. 2022 Jun;37(6):1288-1296 [PMID: 35166444]
  9. Biomedicines. 2021 Nov 10;9(11): [PMID: 34829889]
  10. J Appl Toxicol. 2008 Mar;28(2):175-82 [PMID: 17582580]
  11. Front Pharmacol. 2014 Mar 06;5:33 [PMID: 24639652]
  12. Biomedicines. 2021 Mar 20;9(3): [PMID: 33804693]
  13. Biol Trace Elem Res. 2020 Nov;198(1):224-230 [PMID: 32100273]
  14. Indian J Exp Biol. 2009 Dec;47(12):955-63 [PMID: 20329698]
  15. J Hepatol. 2011 Jul;55(1):227-8 [PMID: 21238521]
  16. Clin Chem. 1999 Feb;45(2):301-6 [PMID: 9931060]
  17. Int J Environ Res Public Health. 2021 Jun 24;18(13): [PMID: 34202682]
  18. ACS Nano. 2012 Oct 23;6(10):8767-77 [PMID: 22994679]
  19. Libyan J Med. 2010 Jan;5(1):4621 [PMID: 28156294]
  20. Rev Environ Health. 2009 Apr-Jun;24(2):75-115 [PMID: 19658317]
  21. Exp Toxicol Pathol. 2011 Jan;63(1-2):9-15 [PMID: 19819122]
  22. PLoS One. 2016 Mar 11;11(3):e0151225 [PMID: 26967897]
  23. J Adv Res. 2021 Apr 08;35:129-140 [PMID: 35024197]
  24. J Exp Med. 1959 Oct 31;110(5):801-10 [PMID: 19867166]
  25. Int J Mol Sci. 2017 Apr 13;18(4): [PMID: 28406445]
  26. Semin Liver Dis. 2002 Feb;22(1):27-42 [PMID: 11928077]
  27. J Toxicol Sci. 2019;44(11):737-751 [PMID: 31708531]
  28. Int J Mol Sci. 2020 Jul 16;21(14): [PMID: 32708570]
  29. Ann Transl Med. 2021 Apr;9(8):730 [PMID: 33987428]
  30. Front Biosci (Landmark Ed). 2022 Nov 25;27(11):314 [PMID: 36472117]
  31. Toxicology. 2004 Jul 15;200(1):29-38 [PMID: 15158561]
  32. Chemosphere. 2022 Nov;307(Pt 1):135618 [PMID: 35817190]
  33. Int J Mol Sci. 2020 Feb 28;21(5): [PMID: 32121273]
  34. Interdiscip Toxicol. 2019 Oct;12(2):45-70 [PMID: 32206026]
  35. Mol Med Rep. 2018 Feb;17(2):3133-3139 [PMID: 29257258]
  36. J Toxicol. 2021 Aug 10;2021:9564297 [PMID: 34422041]
  37. Br J Exp Pathol. 1981 Aug;62(4):383-92 [PMID: 7295532]
  38. Environ Toxicol. 2019 Apr;34(4):521-529 [PMID: 30623991]
  39. Chemosphere. 2018 Jul;202:330-338 [PMID: 29574386]
  40. J Immunol. 2000 Oct 15;165(8):4290-7 [PMID: 11035063]
  41. Part Fibre Toxicol. 2019 Dec 27;16(1):48 [PMID: 31881974]
  42. Drug Chem Toxicol. 1999 Nov;22(4):613-28 [PMID: 10536752]
  43. Chemosphere. 2021 May;271:129735 [PMID: 33736223]
  44. J Cell Biol. 2021 Sep 6;220(9): [PMID: 34328510]
  45. Toxicol Ind Health. 2021 Oct;37(10):619-634 [PMID: 34569379]
  46. 3 Biotech. 2019 Apr;9(4):125 [PMID: 30863704]
  47. J Biomed Mater Res. 1998 Apr;40(1):40-7 [PMID: 9511097]
  48. Biol Trace Elem Res. 2019 Oct;191(2):443-452 [PMID: 30715683]
  49. Toxicol Appl Pharmacol. 2008 Jan 15;226(2):128-39 [PMID: 17919673]
  50. Exp Mol Pathol. 2003 Dec;75(3):265-76 [PMID: 14611818]
  51. Oncol Lett. 2018 Feb;15(2):2266-2272 [PMID: 29403564]
  52. Antioxid Redox Signal. 2002 Jun;4(3):445-54 [PMID: 12215211]
  53. Environ Toxicol Pharmacol. 2018 Sep;62:79-87 [PMID: 29986281]
  54. Toxicol Rep. 2022 Feb 26;9:269-275 [PMID: 35256998]
  55. Mutat Res. 2003 Dec 10;533(1-2):37-65 [PMID: 14643412]
  56. Chem Res Toxicol. 2011 Oct 17;24(10):1617-29 [PMID: 21766833]
  57. Arch Toxicol. 2019 Apr;93(4):859-869 [PMID: 30891623]
  58. Am J Physiol Gastrointest Liver Physiol. 2016 Jan 15;310(2):G117-27 [PMID: 26564716]
  59. Am J Pathol. 1989 Jun;134(6):1263-74 [PMID: 2757117]
  60. J Biochem Mol Toxicol. 2000;14(2):110-7 [PMID: 10630425]
  61. BMC Gastroenterol. 2021 Jul 8;21(1):278 [PMID: 34238237]
  62. Int J Mol Sci. 2022 Apr 27;23(9): [PMID: 35563242]
  63. Interdiscip Toxicol. 2014 Jun;7(2):60-72 [PMID: 26109881]
  64. Hum Exp Toxicol. 2002 Jul;21(7):365-9 [PMID: 12269698]
  65. Environ Health Perspect. 2011 Oct;119(10):1356-63 [PMID: 21684831]
  66. J Toxicol Clin Toxicol. 2000;38(4):395-405 [PMID: 10930056]
  67. Heliyon. 2020 Sep 08;6(9):e04691 [PMID: 32964150]
  68. J Inorg Biochem. 2019 Jun;195:120-129 [PMID: 30939379]
  69. HPB (Oxford). 2013 Aug;15(8):581-7 [PMID: 23458185]
  70. Front Pharmacol. 2019 Jul 23;10:730 [PMID: 31396080]
  71. Int J Mol Sci. 2019 Apr 30;20(9): [PMID: 31052166]
  72. World J Gastroenterol. 2014 Jul 7;20(25):8082-91 [PMID: 25009380]
  73. Indian J Clin Biochem. 2013 Jan;28(1):65-70 [PMID: 24381424]
  74. Exp Toxicol Pathol. 2004 Oct;56(1-2):59-64 [PMID: 15581276]
  75. Int J Hematol. 2008 Jul;88(1):7-15 [PMID: 18594779]
  76. Environ Toxicol. 2015 Feb;30(2):232-41 [PMID: 23996974]
  77. J Biochem Mol Toxicol. 2005;19(3):154-61 [PMID: 15977196]
  78. J Basic Clin Physiol Pharmacol. 2018 Sep 4;30(2):141-152 [PMID: 30179849]
  79. Arch Toxicol. 2014 Nov;88(11):1929-38 [PMID: 25199685]
  80. Am J Physiol Gastrointest Liver Physiol. 2007 Jun;292(6):G1490-8 [PMID: 17307722]
  81. Environ Toxicol. 2017 Jul;32(7):1899-1907 [PMID: 28303633]
  82. Metallomics. 2021 Oct 20;13(10): [PMID: 34562083]
  83. Mutat Res. 2012 Jun 14;745(1-2):84-91 [PMID: 22198329]
  84. Biol Trace Elem Res. 2012 Feb;145(2):189-200 [PMID: 21882068]
  85. Front Pharmacol. 2021 Apr 13;12:643972 [PMID: 33927623]
  86. Nanotechnology. 2016 Mar 18;27(11):112001 [PMID: 26871200]
  87. Biometals. 2011 Feb;24(1):1-17 [PMID: 20981472]
  88. Toxicology. 2022 Jan 30;466:153068 [PMID: 34921910]
  89. Comp Hepatol. 2003 Apr 3;2(1):5 [PMID: 12769823]
  90. Transl Gastroenterol Hepatol. 2021 Apr 05;6:21 [PMID: 33824925]
  91. Front Pharmacol. 2021 Jan 14;11:595335 [PMID: 33597875]
  92. Int J Mol Sci. 2021 Sep 27;22(19): [PMID: 34638760]
  93. Adv Nutr. 2018 May 1;9(3):272-273 [PMID: 29767695]
  94. Environ Health. 2011 Jul 08;10:64 [PMID: 21740555]
  95. Chin Med J (Engl). 1982 Nov;95(11):849-54 [PMID: 6819923]
  96. Cell. 2012 May 25;149(5):1060-72 [PMID: 22632970]
  97. Arch Biochem Biophys. 1997 Oct 15;346(2):171-9 [PMID: 9343363]
  98. Biotechnol Rep (Amst). 2020 Apr 20;26:e00453 [PMID: 32368512]
  99. Biol Trace Elem Res. 2016 Mar;170(1):106-14 [PMID: 26208811]
  100. Int J Biochem Cell Biol. 2009 Mar;41(3):586-94 [PMID: 18708157]
  101. J Expo Sci Environ Epidemiol. 2018 Jan;28(1):76-83 [PMID: 28120834]

MeSH Term

Humans
Animals
Nickel
Zinc
Copper
Cadmium
Cobalt
Vanadium
Molybdenum
Aluminum
Chromium
Arsenic
Titanium
Beryllium
Iron
Platinum
Thallium
Reactive Oxygen Species
Cyclooxygenase 2
Mercury
Antioxidants
Lipopolysaccharides
Ecosystem
Apoferritins
Metals, Heavy
Liver
Environmental Pollutants
Glutathione
Necrosis
Glutamates
Nuclear Receptor Coactivators
Organic Anion Transporters
RNA, Messenger

Chemicals

Nickel
Zinc
Copper
Cadmium
Cobalt
Vanadium
Molybdenum
Aluminum
Chromium
Arsenic
Titanium
Beryllium
Iron
Platinum
Thallium
Reactive Oxygen Species
Cyclooxygenase 2
Mercury
Antioxidants
Lipopolysaccharides
Apoferritins
Metals, Heavy
Environmental Pollutants
Glutathione
Glutamates
Nuclear Receptor Coactivators
Organic Anion Transporters
RNA, Messenger

Word Cloud

Created with Highcharts 10.0.0liverinjuryHMsironmercurymaymechanisticROSnickeltitaniumreactionproteinexpressionhepaticferroptosisOat3ExperimentalnecrosiscausedheavyaluminumarsenicberylliumcadmiumchromiumcobaltcopperleadmolybdenumplatinumthalliumvanadiumzincanimalsmolecularstepsleadinghepatocellulardueoxidativestressmembranesLiverFentonsystemspyroptosisincreased2mRNAlevels4NickeladditionalconceptsuptakebiliaryexcretiontransporterMrp2MercurymodifieddiversityLPSendotoxinslevelgut-liverhepatocelluarabnormaltestsexposuremetalslikepollutantsdisturbecosystemsubstancestoxicaffecthealthhumansbiodegradabledepositedpreferentiallyuseanimalmodelscanhelpidentifycommonlyinitiateoverproductionreactiveoxygenspeciesresultingcovalentbindingradicalsmacromolecularproteinslipidsexistingsubcellularorganellesfacilitatedviaprovidingtriggeredprotectiveantioxidantexhaustedFerroptosissynrecentlyintroducedconceptexplanationsNiNiClcausesdepositionupregulationcyclooxygenaseCOX-2downregulationglutathioneeroxidaseGPX4ferritinchain1FTH1nuclearreceptorcoactivatorNCOA4causemitochondrialdamagedefinedmechanismiron-dependentcelldeathsimilarglutamate-inducedexcitotoxicitylikelydistinctapoptosisautophagydiscussionexposedinstanceorganicanion3multidrugresistance-associatedinvolvedhandlingtreatmentassessedimmunoblottingpartiallyexplainingimpairedConcomitantlydecreaseabundancehepatocyteplasmaobservedlimitsionsimportantlyshownfirsttimechangedgutmicrobiotametabolicfunctionsgenerationlipopolysaccharidestriggerperpetuatesumexperimentalHMadministrationcomplexkeypromotionalcompoundHoweverusedmodificationderivedintestinalbacteriameritconsiderationAluminumArsenicBerylliumCadmiumChromiumCobaltCopperIronLeadMolybdenumPlatinumThalliumTitaniumVanadiumZinc:MolecularAspectsInjuryfenton

Similar Articles

Cited By