A Review of Recent Advances in Vital Signals Monitoring of Sports and Health via Flexible Wearable Sensors.

Wenbin Sun, Zilong Guo, Zhiqiang Yang, Yizhou Wu, Weixia Lan, Yingjie Liao, Xian Wu, Yuanyuan Liu
Author Information
  1. Wenbin Sun: School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China.
  2. Zilong Guo: School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China.
  3. Zhiqiang Yang: School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China.
  4. Yizhou Wu: School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China.
  5. Weixia Lan: School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China. ORCID
  6. Yingjie Liao: School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China.
  7. Xian Wu: School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China.
  8. Yuanyuan Liu: School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China.

Abstract

In recent years, vital signals monitoring in sports and health have been considered the research focus in the field of wearable sensing technologies. Typical signals include bioelectrical signals, biophysical signals, and biochemical signals, which have applications in the fields of athletic training, medical diagnosis and prevention, and rehabilitation. In particular, since the COVID-19 pandemic, there has been a dramatic increase in real-time interest in personal health. This has created an urgent need for flexible, wearable, portable, and real-time monitoring sensors to remotely monitor these signals in response to health management. To this end, the paper reviews recent advances in flexible wearable sensors for monitoring vital signals in sports and health. More precisely, emerging wearable devices and systems for health and exercise-related vital signals (e.g., ECG, EEG, EMG, inertia, body movements, heart rate, blood, sweat, and interstitial fluid) are reviewed first. Then, the paper creatively presents multidimensional and multimodal wearable sensors and systems. The paper also summarizes the current challenges and limitations and future directions of wearable sensors for vital typical signal detection. Through the review, the paper finds that these signals can be effectively monitored and used for health management (e.g., disease prediction) thanks to advanced manufacturing, flexible electronics, IoT, and artificial intelligence algorithms; however, wearable sensors and systems with multidimensional and multimodal are more compliant.

Keywords

References

  1. Sensors (Basel). 2020 Aug 19;20(17): [PMID: 32824976]
  2. Sensors (Basel). 2017 Nov 17;17(11): [PMID: 29149063]
  3. Nat Nanotechnol. 2018 Jun;13(6):504-511 [PMID: 29632401]
  4. Biosens Bioelectron. 2020 Mar 1;151:111981 [PMID: 31999588]
  5. ACS Appl Mater Interfaces. 2016 Aug 17;8(32):20894-9 [PMID: 27462991]
  6. Sensors (Basel). 2021 Oct 14;21(20): [PMID: 34696033]
  7. Adv Mater. 2020 Jun;32(24):e2001130 [PMID: 32374473]
  8. Colloids Surf B Biointerfaces. 2021 Dec;208:112041 [PMID: 34425531]
  9. Anal Chem. 2020 Jan 21;92(2):2291-2300 [PMID: 31874029]
  10. Micromachines (Basel). 2019 Oct 25;10(11): [PMID: 31731489]
  11. Adv Healthc Mater. 2018 Apr;7(7):e1701264 [PMID: 29345430]
  12. Microsyst Nanoeng. 2019 Jun 17;5:29 [PMID: 31240108]
  13. Sensors (Basel). 2021 Aug 07;21(16): [PMID: 34450776]
  14. Nanoscale Horiz. 2018 Nov 1;3(6):640-647 [PMID: 32254117]
  15. Anal Chem. 2015 Jan 6;87(1):394-8 [PMID: 25496376]
  16. Materials (Basel). 2020 May 05;13(9): [PMID: 32380683]
  17. Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:4305-4308 [PMID: 30441306]
  18. Biosensors (Basel). 2021 May 08;11(5): [PMID: 34066654]
  19. BMC Biomed Eng. 2020 Feb 27;2:3 [PMID: 32903362]
  20. Sensors (Basel). 2022 Apr 17;22(8): [PMID: 35459064]
  21. Microsyst Nanoeng. 2021 Jul 21;7:53 [PMID: 34567766]
  22. ACS Sens. 2020 Jun 26;5(6):1582-1588 [PMID: 32233394]
  23. Biosensors (Basel). 2022 Jan 24;12(2): [PMID: 35200321]
  24. Proc Natl Acad Sci U S A. 2020 Nov 10;117(45):27906-27915 [PMID: 33106394]
  25. Sensors (Basel). 2020 Jul 13;20(14): [PMID: 32668810]
  26. ACS Nano. 2015 Jun 23;9(6):5929-36 [PMID: 26038807]
  27. Biosens Bioelectron. 2020 Nov 15;168:112450 [PMID: 32877780]
  28. ACS Nano. 2014 Dec 23;8(12):12851-7 [PMID: 25437513]
  29. Adv Mater. 2014 Nov 19;26(43):7324-32 [PMID: 25256696]
  30. ACS Nano. 2021 Jun 22;15(6):10130-10140 [PMID: 34086454]
  31. Adv Mater. 2015 Jan 27;27(4):634-40 [PMID: 25358966]
  32. Sensors (Basel). 2022 Mar 16;22(6): [PMID: 35336473]
  33. Sci Rep. 2020 Sep 10;10(1):14891 [PMID: 32913303]
  34. Talanta. 2019 Jan 15;192:424-430 [PMID: 30348413]
  35. Sensors (Basel). 2021 Oct 21;21(21): [PMID: 34770304]
  36. Sci Technol Adv Mater. 2020 Jun 24;21(1):379-387 [PMID: 32939163]
  37. PLoS One. 2017 Oct 11;12(10):e0183651 [PMID: 29020053]
  38. Adv Mater. 2022 Jan;34(2):e2104313 [PMID: 34757634]
  39. Sci Rep. 2022 Apr 5;12(1):5711 [PMID: 35383233]
  40. Biosensors (Basel). 2020 Jul 08;10(7): [PMID: 32650462]
  41. Biosensors (Basel). 2021 Apr 01;11(4): [PMID: 33915714]
  42. Sensors (Basel). 2019 Oct 03;19(19): [PMID: 31623321]
  43. Nat Commun. 2018 Jan 16;9(1):244 [PMID: 29339793]
  44. Sensors (Basel). 2021 Jul 29;21(15): [PMID: 34372379]
  45. ACS Appl Mater Interfaces. 2021 Jan 13;13(1):2100-2109 [PMID: 33347284]
  46. Lab Chip. 2017 May 16;17(10):1834-1842 [PMID: 28470263]
  47. Soft Robot. 2019 Jun;6(3):368-376 [PMID: 30848994]
  48. J Diabetes Sci Technol. 2021 Jan;15(1):28-33 [PMID: 33084386]
  49. Nanoscale. 2021 Jun 28;13(24):10798-10806 [PMID: 34106110]
  50. Micromachines (Basel). 2021 Oct 06;12(10): [PMID: 34683270]
  51. Annu Int Conf IEEE Eng Med Biol Soc. 2017 Jul;2017:3281-3284 [PMID: 29060598]
  52. Adv Healthc Mater. 2021 Sep;10(17):e2100116 [PMID: 33960133]
  53. Front Cardiovasc Med. 2022 Apr 01;9:844296 [PMID: 35433868]
  54. Anal Chem. 2021 Sep 21;93(37):12767-12775 [PMID: 34477377]
  55. Sensors (Basel). 2011;11(6):5819-34 [PMID: 22163929]
  56. ACS Appl Mater Interfaces. 2020 Nov 4;12(44):49945-49956 [PMID: 33090758]
  57. J Neuroeng Rehabil. 2012 Jan 28;9:5 [PMID: 22284235]
  58. Adv Funct Mater. 2017 Jan 5;27(1): [PMID: 28798658]
  59. Lab Chip. 2014 Mar 21;14(6):1107-16 [PMID: 24480933]
  60. Sensors (Basel). 2022 Feb 05;22(3): [PMID: 35161951]
  61. Micromachines (Basel). 2020 May 30;11(6): [PMID: 32486209]
  62. ACS Sens. 2017 Dec 22;2(12):1860-1868 [PMID: 29152973]
  63. IEEE J Transl Eng Health Med. 2016 May 17;4:2100209 [PMID: 27574575]
  64. Anal Chem. 2020 Jul 21;92(14):10153-10161 [PMID: 32588617]
  65. ACS Nano. 2017 Oct 24;11(10):10032-10041 [PMID: 28837773]
  66. Anal Chem. 2013 Jul 16;85(14):6553-60 [PMID: 23815621]
  67. Sensors (Basel). 2020 Apr 29;20(9): [PMID: 32365622]
  68. Ann Biomed Eng. 2015 Oct;43(10):2374-82 [PMID: 25691400]
  69. Nat Nanotechnol. 2014 May;9(5):397-404 [PMID: 24681776]
  70. Sensors (Basel). 2020 Sep 05;20(18): [PMID: 32899540]
  71. Nat Commun. 2016 May 23;7:11650 [PMID: 27212140]
  72. Adv Healthc Mater. 2020 Aug;9(15):e1901735 [PMID: 32548973]
  73. Angew Chem Int Ed Engl. 2022 Apr 4;61(15):e202200705 [PMID: 35122674]
  74. ACS Appl Mater Interfaces. 2020 May 13;12(19):22179-22190 [PMID: 32302480]
  75. Med Biol Eng Comput. 2015 Jan;53(1):15-22 [PMID: 25300403]
  76. Sensors (Basel). 2021 May 24;21(11): [PMID: 34073881]
  77. J Neural Eng. 2020 Mar 04;17(2):026001 [PMID: 32000145]
  78. Sensors (Basel). 2021 Mar 08;21(5): [PMID: 33800415]
  79. Sensors (Basel). 2022 Jul 06;22(14): [PMID: 35890769]
  80. Adv Sci (Weinh). 2018 Aug 02;5(10):1800880 [PMID: 30356971]
  81. IEEE Trans Biomed Eng. 2020 Aug;67(8):2159-2165 [PMID: 31794383]
  82. Digit Biomark. 2018 Jan 23;2(1):1-10 [PMID: 32095755]
  83. Nanomicro Lett. 2019 Jul 16;11(1):57 [PMID: 34137984]
  84. Biosens Bioelectron. 2021 Sep 15;188:113325 [PMID: 34030098]
  85. Lab Chip. 2012 Mar 21;12(6):1110-8 [PMID: 22311169]
  86. Sensors (Basel). 2021 Sep 09;21(18): [PMID: 34577254]
  87. IEEE Trans Biomed Eng. 2017 Apr;64(4):826-833 [PMID: 27323353]
  88. Polymers (Basel). 2020 Oct 19;12(10): [PMID: 33086662]
  89. Diagnostics (Basel). 2022 Mar 11;12(3): [PMID: 35328243]
  90. ACS Appl Mater Interfaces. 2018 Nov 21;10(46):40141-40148 [PMID: 30360058]
  91. IEEE Trans Biomed Eng. 2019 May;66(5):1412-1421 [PMID: 30295608]
  92. Npj Flex Electron. 2020;4(1):5 [PMID: 38624354]
  93. Chemphyschem. 2018 Jun 19;19(12):1531-1536 [PMID: 29573322]
  94. Biomicrofluidics. 2016 Feb 23;10(1):011910 [PMID: 26958097]

Grants

  1. 61973206, 61703265, 61803250, 61933008/National Natural Science Foundation of China
  2. 19QA1403700/Shanghai Science and Technology Committee
  3. 17YF1406100, 17YF1406200/Shanghai Science and Technology Committee Sailing Program Foundation

MeSH Term

Humans
Artificial Intelligence
Pandemics
COVID-19
Wearable Electronic Devices
Monitoring, Physiologic
Sports

Word Cloud

Created with Highcharts 10.0.0signalswearablehealthsensorsvitalflexiblepapermonitoringsystemsrecentsportsmedicalreal-timemanagementegmultidimensionalmultimodalelectronicsyearsconsideredresearchfocusfieldsensingtechnologiesTypicalincludebioelectricalbiophysicalbiochemicalapplicationsfieldsathletictrainingdiagnosispreventionrehabilitationparticularsinceCOVID-19pandemicdramaticincreaseinterestpersonalcreatedurgentneedportableremotelymonitorresponseendreviewsadvancespreciselyemergingdevicesexercise-relatedECGEEGEMGinertiabodymovementsheartratebloodsweatinterstitialfluidreviewedfirstcreativelypresentsalsosummarizescurrentchallengeslimitationsfuturedirectionstypicalsignaldetectionreviewfindscaneffectivelymonitoreduseddiseasepredictionthanksadvancedmanufacturingIoTartificialintelligencealgorithmshowevercompliantReviewRecentAdvancesVitalSignalsMonitoringSportsHealthviaFlexibleWearableSensorshumanmovementsensor

Similar Articles

Cited By