Evaluation of Five Buffers for Inactivation of Monkeypox Virus and Feasibility of Virus Detection Using the Panther Fusion Open Access System.

Robert J Fischer, Shane Gallogly, Jonathan E Schulz, Neeltje van Doremalen, Vincent Munster, Sanchita Das
Author Information
  1. Robert J Fischer: Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA. ORCID
  2. Shane Gallogly: Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA.
  3. Jonathan E Schulz: Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA.
  4. Neeltje van Doremalen: Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA. ORCID
  5. Vincent Munster: Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA.
  6. Sanchita Das: Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA.

Abstract

Rapid diagnosis is key to containing viral outbreaks. However, for the current monkeypox outbreak the major deterrent to rapid testing is the requirement for higher biocontainment of potentially infectious monkeypox virus specimens. The current CDC guidelines require the DNA extraction process before PCR amplification to be performed under biosafety level 3 unless vaccinated personnel are performing assays. This increases the turn-around time and makes certain laboratories insufficiently equipped to handle specimens from patients with suspected monkeypox infection. We investigated the ability of five commercially available lysis buffers and heat for inactivation of monkeypox virus. We also optimized the use of monkeypox virus in Hologic Panther Specimen Lysis Buffer for detection of virus in the Panther Fusion Open Access System using published generic and clade specific monkeypox virus primers and probes.

Keywords

References

  1. Viruses. 2020 Jun 08;12(6): [PMID: 32521706]
  2. Lancet. 2022 Aug 27;400(10353):661-669 [PMID: 35952705]
  3. J Clin Virol. 2019 Dec;121:104204 [PMID: 31743836]
  4. J Virol Methods. 2010 Oct;169(1):223-7 [PMID: 20643162]
  5. Emerg Infect Dis. 2022 Oct;28(10):2121-2123 [PMID: 35971952]
  6. J Virol Methods. 2017 Dec;250:34-40 [PMID: 28941617]
  7. Appl Environ Microbiol. 2021 Sep 10;87(19):e0031421 [PMID: 34288702]
  8. Jpn J Infect Dis. 2008 Mar;61(2):140-2 [PMID: 18362406]
  9. J Clin Microbiol. 2015 Oct;53(10):3148-54 [PMID: 26179307]
  10. Euro Surveill. 2022 Sep;27(35): [PMID: 36052723]
  11. MMWR Morb Mortal Wkly Rep. 2022 Jul 15;71(28):904-907 [PMID: 35834423]
  12. J Infect Dis. 2017 Oct 17;216(7):859-866 [PMID: 28961947]
  13. J Virol Methods. 2020 Apr;278:113835 [PMID: 32035122]
  14. MMWR Morb Mortal Wkly Rep. 2022 Sep 09;71(36):1155-1158 [PMID: 36074752]
  15. J Clin Microbiol. 2016 Oct;54(10):2521-9 [PMID: 27466385]
  16. J Med Virol. 1987 Nov;23(3):297-301 [PMID: 2828525]

Grants

  1. Intramural funding/NIAID NIH HHS

MeSH Term

Humans
Monkeypox virus
Mpox, Monkeypox
Access to Information
Feasibility Studies
Disease Outbreaks
DNA

Chemicals

DNA

Word Cloud

Created with Highcharts 10.0.0monkeypoxvirusPanthercurrentspecimensPCRinactivationdetectionFusionOpenAccessSystemVirusRapiddiagnosiskeycontainingviraloutbreaksHoweveroutbreakmajordeterrentrapidtestingrequirementhigherbiocontainmentpotentiallyinfectiousCDCguidelinesrequireDNAextractionprocessamplificationperformedbiosafetylevel3unlessvaccinatedpersonnelperformingassaysincreasesturn-aroundtimemakescertainlaboratoriesinsufficientlyequippedhandlepatientssuspectedinfectioninvestigatedabilityfivecommerciallyavailablelysisbuffersheatalsooptimizeduseHologicSpecimenLysisBufferusingpublishedgenericcladespecificprimersprobesEvaluationFiveBuffersInactivationMonkeypoxFeasibilityDetectionUsingautomatedmolecular

Similar Articles

Cited By