Drunken lipid membranes, not drunken SNARE proteins, promote fusion in a model of neurotransmitter release.

Robert E Coffman, Katelyn N Kraichely, Alex J B Kreutzberger, Volker Kiessling, Lukas K Tamm, Dixon J Woodbury
Author Information
  1. Robert E Coffman: Neuroscience Center, Brigham Young University, Provo, UT, United States.
  2. Katelyn N Kraichely: Department of Molecular Physiology and Biological Physics, University of Virginia Health System, Charlottesville, VA, United States.
  3. Alex J B Kreutzberger: Department of Molecular Physiology and Biological Physics, University of Virginia Health System, Charlottesville, VA, United States.
  4. Volker Kiessling: Department of Molecular Physiology and Biological Physics, University of Virginia Health System, Charlottesville, VA, United States.
  5. Lukas K Tamm: Department of Molecular Physiology and Biological Physics, University of Virginia Health System, Charlottesville, VA, United States.
  6. Dixon J Woodbury: Neuroscience Center, Brigham Young University, Provo, UT, United States.

Abstract

Alcohol affects many neuronal proteins that are upstream or down-stream of synaptic vesicle fusion and neurotransmitter release. Less well studied is alcohol's effect on the fusion machinery including SNARE proteins and lipid membranes. Using a SNARE-driven fusion assay we show that fusion probability is significantly increased at 0.4% v/v (68 mM) ethanol; but not with methanol up to 10%. Ethanol appears to act directly on membrane lipids since experiments focused on protein properties [circular dichroism spectrometry, site-directed fluorescence interference contrast (sdFLIC) microscopy, and vesicle docking results] showed no significant changes up to 5% ethanol, but a protein-free fusion assay also showed increased lipid membrane fusion rates with 0.4% ethanol. These data show that the effects of high physiological doses of ethanol on SNARE-driven fusion are mediated through ethanol's interaction with the lipid bilayer of membranes and not SNARE proteins, and that methanol affects lipid membranes and SNARE proteins only at high doses.

Keywords

References

  1. Biophys J. 1988 Aug;54(2):345-9 [PMID: 2462925]
  2. Biophys J. 2000 Sep;79(3):1400-14 [PMID: 10969002]
  3. EMBO J. 2001 May 1;20(9):2202-13 [PMID: 11331586]
  4. Anal Bioanal Chem. 2011 Jul;400(9):2963-71 [PMID: 21523329]
  5. Cold Spring Harb Perspect Med. 2021 Feb 1;11(2): [PMID: 31988201]
  6. FEBS Lett. 2018 Nov;592(21):3542-3562 [PMID: 29904915]
  7. Alcohol Clin Exp Res. 2017 Nov;41(11):1816-1830 [PMID: 28833225]
  8. Trends Pharmacol Sci. 2017 Jun;38(6):556-568 [PMID: 28372826]
  9. Curr Opin Struct Biol. 2003 Aug;13(4):453-66 [PMID: 12948775]
  10. J Neurophysiol. 2006 Jul;96(1):433-41 [PMID: 16624993]
  11. Chembiochem. 2011 May 2;12(7):1049-55 [PMID: 21433241]
  12. Biophys J. 2017 Nov 7;113(9):1912-1915 [PMID: 29037600]
  13. Pharmacol Rev. 2014 Feb 10;66(2):396-412 [PMID: 24515646]
  14. Neuron. 2017 Dec 20;96(6):1223-1238 [PMID: 29268093]
  15. Front Mol Neurosci. 2017 Mar 16;10:72 [PMID: 28360838]
  16. Sci Adv. 2017 Jul 19;3(7):e1603208 [PMID: 28776026]
  17. Nat Struct Mol Biol. 2018 Oct;25(10):911-917 [PMID: 30291360]
  18. Biophys J. 1999 Oct;77(4):2035-45 [PMID: 10512823]
  19. Biophys J. 2016 Apr 12;110(7):1538-1550 [PMID: 27074679]
  20. Proc Natl Acad Sci U S A. 2015 Jun 16;112(24):E3095-103 [PMID: 26038575]
  21. J Neurosci. 2010 Mar 17;30(11):3904-11 [PMID: 20237261]
  22. Pharmacol Ther. 2005 Jul;107(1):80-98 [PMID: 15963352]
  23. Biochemistry. 1998 Jul 21;37(29):10354-62 [PMID: 9671503]
  24. ACS Chem Biol. 2010 Sep 17;5(9):819-28 [PMID: 20590163]
  25. Nat Commun. 2021 Jun 14;12(1):3606 [PMID: 34127664]
  26. J Cell Sci. 2005 Oct 15;118(Pt 20):4833-48 [PMID: 16219690]
  27. Chem Phys Lipids. 2013 Jan;166:45-54 [PMID: 23200791]
  28. Prog Lipid Res. 2019 Jan;73:92-100 [PMID: 30611882]
  29. Biochem Soc Trans. 2010 Feb;38(Pt 1):172-6 [PMID: 20074054]
  30. Biophys J. 2015 Jul 21;109(2):319-29 [PMID: 26200867]
  31. Langmuir. 2005 Feb 15;21(4):1377-88 [PMID: 15697284]
  32. Cell Biol Int. 2000;24(11):809-18 [PMID: 11067766]
  33. Curr Opin Struct Biol. 2019 Feb;54:179-188 [PMID: 30986753]
  34. Biophys J. 2010 Dec 15;99(12):4047-55 [PMID: 21156148]
  35. Biophys J. 2016 May 24;110(10):2147-50 [PMID: 27178662]
  36. Alcohol Clin Exp Res. 2006 Feb;30(2):222-32 [PMID: 16441271]
  37. Biochim Biophys Acta. 1992 Jan 31;1103(2):307-16 [PMID: 1311950]
  38. Chem Phys Lipids. 2016 Sep;199:136-143 [PMID: 27179407]
  39. Cell Rep. 2018 Jan 9;22(2):427-440 [PMID: 29320738]
  40. Biophys J. 2017 Jan 10;112(1):121-132 [PMID: 28076803]
  41. Biophys J. 2010 Nov 3;99(9):2936-46 [PMID: 21044591]
  42. Proc Natl Acad Sci U S A. 2013 Nov 26;110(48):19384-9 [PMID: 24218570]
  43. Alcohol Clin Exp Res. 2018 Nov;42(11):2186-2195 [PMID: 30204234]
  44. Elife. 2019 Mar 18;8: [PMID: 30883328]
  45. J Biol Chem. 2009 Nov 13;284(46):32158-66 [PMID: 19759010]
  46. Science. 2012 Sep 14;337(6100):1340-3 [PMID: 22903523]
  47. Neuropharmacology. 2017 Aug 1;122:36-45 [PMID: 28479395]
  48. Cell Rep Phys Sci. 2021 Nov 17;2(11): [PMID: 34888535]
  49. J Biol Chem. 1997 Oct 31;272(44):28036-41 [PMID: 9346956]
  50. Biophys J. 2013 May 7;104(9):1950-8 [PMID: 23663838]
  51. Prog Neurobiol. 2018 Dec;171:32-49 [PMID: 30316901]
  52. Curr Opin Neurobiol. 1997 Jun;7(3):310-5 [PMID: 9232812]
  53. Nature. 1993 Mar 25;362(6418):318-24 [PMID: 8455717]
  54. Biophys J. 2003 Jan;84(1):408-18 [PMID: 12524294]
  55. Cell. 1998 Mar 20;92(6):759-72 [PMID: 9529252]
  56. Mol Brain. 2017 Sep 20;10(1):45 [PMID: 28931433]
  57. BMJ. 2005 Jan 8;330(7482):85-7 [PMID: 15637372]
  58. Alcohol Clin Exp Res. 2020 Jan;44(1):7-18 [PMID: 31724225]
  59. Langmuir. 2008 Mar 18;24(6):2637-42 [PMID: 18278956]
  60. Biophys J. 2004 Aug;87(2):1013-33 [PMID: 15298907]
  61. Sci Am. 1998 Jun;278(6):80-5 [PMID: 9644011]
  62. Proc Natl Acad Sci U S A. 2009 Mar 31;106(13):5141-6 [PMID: 19251653]
  63. Biophys J. 2006 Nov 1;91(9):3313-26 [PMID: 16905614]
  64. Cell Biochem Biophys. 1999;30(3):303-29 [PMID: 10403054]
  65. Front Neurosci. 2015 Apr 23;9:144 [PMID: 25954150]
  66. Biophys J. 2008 May 15;94(10):3976-86 [PMID: 18227127]
  67. Biochim Biophys Acta. 1984 Jun 13;773(1):169-72 [PMID: 6733093]
  68. Phys Rev Lett. 2003 Oct 31;91(18):188102 [PMID: 14611319]
  69. J Gen Physiol. 1989 Feb;93(2):211-44 [PMID: 2467961]
  70. Biophys J. 1988 Dec;54(6):1053-63 [PMID: 2466492]
  71. EMBO J. 2006 Mar 8;25(5):955-66 [PMID: 16498411]

Grants

  1. P01 GM072694/NIGMS NIH HHS

Word Cloud

Created with Highcharts 10.0.0fusionproteinsSNARElipidethanolmembranesmethanolmembraneaffectsvesicleneurotransmitterreleaseSNARE-drivenassayshowincreased04%dichroismshowedhighdosesAlcoholmanyneuronalupstreamdown-streamsynapticLesswellstudiedalcohol'seffectmachineryincludingUsingprobabilitysignificantlyv/v68mM10%Ethanolappearsactdirectlylipidssinceexperimentsfocusedproteinproperties[circularspectrometrysite-directedfluorescenceinterferencecontrastsdFLICmicroscopydockingresults]significantchanges5%protein-freealsoratesdataeffectsphysiologicalmediatedethanol'sinteractionbilayerDrunkendrunkenpromotemodelFLICTIRFcircularelectrophysiology

Similar Articles

Cited By