Confining Gold Nanoparticles in Preformed Zeolites by Post-Synthetic Modification Enhances Stability and Catalytic Reactivity and Selectivity.

Eunji Eom, Minseok Song, Jeong-Chul Kim, Dong-Il Kwon, Daniel N Rainer, Kinga Gołąbek, Sung Chan Nam, Ryong Ryoo, Michal Mazur, Changbum Jo
Author Information
  1. Eunji Eom: Department of Chemistry and Chemical Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea.
  2. Minseok Song: Department of Chemistry and Chemical Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea.
  3. Jeong-Chul Kim: Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea.
  4. Dong-Il Kwon: Department of Chemistry and Chemical Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea.
  5. Daniel N Rainer: Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43 Prague, Czech Republic. ORCID
  6. Kinga Gołąbek: Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43 Prague, Czech Republic. ORCID
  7. Sung Chan Nam: Greenhouse Gas Research Laboratory, Korea Institute of Energy Research, Daejeon 34129, Republic of Korea.
  8. Ryong Ryoo: KENTECH Laboratory for Chemical, Environmental and Climate Technology, Korea Institute of Energy Technology (KENTECH), 200 Hyeoksin-ro, Naju 58330, Republic of Korea. ORCID
  9. Michal Mazur: Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43 Prague, Czech Republic. ORCID
  10. Changbum Jo: Department of Chemistry and Chemical Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea. ORCID

Abstract

Confining Au nanoparticles (NPs) in a restricted space (., zeolite micropores) is a promising way of overcoming their inherent thermal instability and susceptibility to aggregation, which limit catalytic applications. However, such approaches involve complex, multistep encapsulation processes. Here, we describe a successful strategy and its guiding principles for confining small (<2 nm) and monodisperse Au NPs within commercially available beta and MFI zeolites, which can oxidize CO at 40 °C and show size-selective catalysis. This protocol involves post-synthetic modification of the zeolite internal surface with thiol groups, which confines AuCl species inside microporous frameworks during the activation process whereby Au precursors are converted into Au nanoparticles. The resulting beta and MFI zeolites contain uniformly dispersed Au NPs throughout the void space, indicating that the intrinsic stability of the framework promotes resistance to sintering. By contrast, scanning transmission electron microscopy (STEM) studies evidenced that Au precursors in bare zeolites migrate from the matrix to the external surface during activation, thereby forming large and poorly dispersed agglomerates. Furthermore, the resistance of confined Au NPs against sintering is likely relevant to the intrinsic stability of the framework, supported by extended X-ray absorption fine structure (EXAFS), H chemisorption, and CO Fourier transform infrared (FT-IR) studies. The Au NPs supported on commercial MFI maintain their uniform dispersity to a large extent after treatment at 700 °C that sinters Au clusters on mesoporous silicas or beta zeolites. Low-temperature CO oxidation and size-selective reactions highlight that most gold NPs are present inside the zeolite matrix with a diameter smaller than 2 nm. These findings illustrate how confinement favors small, uniquely stable, and monodisperse NPs, even for metals such as Au susceptible to cluster growth under conditions often required for catalytic use. Moreover, this strategy may be readily adapted to other zeolite frameworks that can be functionalized by thiol groups.

References

  1. Molecules. 2020 Dec 08;25(24): [PMID: 33302390]
  2. Science. 2007 Oct 19;318(5849):430-3 [PMID: 17947577]
  3. Adv Mater. 2021 Dec;33(48):e2105398 [PMID: 34545976]
  4. Angew Chem Int Ed Engl. 2010 May 3;49(20):3504-7 [PMID: 20391442]
  5. J Am Chem Soc. 2005 Jan 19;127(2):494-5 [PMID: 15643852]
  6. Chem Rev. 2018 Jun 13;118(11):5265-5329 [PMID: 29746122]
  7. Chemistry. 2013 Oct 11;19(42):14215-23 [PMID: 23999985]
  8. Nanoscale. 2012 Jul 21;4(14):4027-37 [PMID: 22717451]
  9. Chem Rev. 2020 Jan 22;120(2):464-525 [PMID: 31820953]
  10. J Am Chem Soc. 2010 Jul 7;132(26):9129-37 [PMID: 20536236]
  11. Mol Pharm. 2019 Jan 7;16(1):1-23 [PMID: 30452861]
  12. J Am Chem Soc. 2004 Mar 10;126(9):2672-3 [PMID: 14995163]
  13. Science. 2014 Sep 26;345(6204):1599-602 [PMID: 25190716]
  14. Chem Soc Rev. 2008 Sep;37(9):2096-126 [PMID: 18762848]
  15. Chem Rec. 2003;3(2):75-87 [PMID: 12731078]
  16. Angew Chem Int Ed Engl. 2014 Nov 10;53(46):12513-6 [PMID: 25196739]
  17. J Nanopart Res. 2016;18(10):295 [PMID: 27766020]
  18. J Am Chem Soc. 2003 Apr 9;125(14):4332-7 [PMID: 12670256]
  19. Chem Rev. 2012 May 9;112(5):2739-79 [PMID: 22295941]
  20. Angew Chem Int Ed Engl. 2019 Jun 17;58(25):8291-8302 [PMID: 30633857]
  21. ACS Nano. 2013 Jun 25;7(6):4902-10 [PMID: 23682983]
  22. J Phys Chem B. 2005 Aug 4;109(30):14581-7 [PMID: 16852838]
  23. J Am Chem Soc. 2012 Aug 1;134(30):12590-5 [PMID: 22827488]

Word Cloud

Created with Highcharts 10.0.0AuNPszeolitezeolitesbetaMFICOConfiningnanoparticlesspacecatalyticstrategysmallnmmonodispersecan°Csize-selectivesurfacethiolgroupsinsideframeworksactivationprecursorsdispersedintrinsicstabilityframeworkresistancesinteringstudiesmatrixlargesupportedrestrictedmicroporespromisingwayovercominginherentthermalinstabilitysusceptibilityaggregationlimitapplicationsHoweverapproachesinvolvecomplexmultistepencapsulationprocessesdescribesuccessfulguidingprinciplesconfining<2withincommerciallyavailableoxidize40showcatalysisprotocolinvolvespost-syntheticmodificationinternalconfinesAuClspeciesmicroporousprocesswherebyconvertedresultingcontainuniformlythroughoutvoidindicatingpromotescontrastscanningtransmissionelectronmicroscopySTEMevidencedbaremigrateexternaltherebyformingpoorlyagglomeratesFurthermoreconfinedlikelyrelevantextendedX-rayabsorptionfinestructureEXAFSHchemisorptionFouriertransforminfraredFT-IRcommercialmaintainuniformdispersityextenttreatment700sintersclustersmesoporoussilicasLow-temperatureoxidationreactionshighlightgoldpresentdiametersmaller2findingsillustrateconfinementfavorsuniquelystableevenmetalssusceptibleclustergrowthconditionsoftenrequireduseMoreovermayreadilyadaptedfunctionalizedGoldNanoparticlesPreformedZeolitesPost-SyntheticModificationEnhancesStabilityCatalyticReactivitySelectivity

Similar Articles

Cited By