Implementation of Machine Learning on Human Frequency-Following Responses: A Tutorial.

Fuh-Cherng Jeng, Yu-Shiang Jeng
Author Information
  1. Fuh-Cherng Jeng: Communication Sciences and Disorders, Ohio University, Athens, Ohio.
  2. Yu-Shiang Jeng: Computer Science and Engineering, Ohio State University, Columbus, Ohio.

Abstract

The frequency-following response (FFR) provides enriched information on how acoustic stimuli are processed in the Human brain. Based on recent studies, machine learning techniques have demonstrated great utility in modeling Human FFRs. This tutorial focuses on the fundamental principles, algorithmic designs, and custom implementations of several supervised models (linear regression, logistic regression, -nearest neighbors, support vector machines) and an unsupervised model ( -means clustering). Other useful machine learning tools (Markov chains, dimensionality reduction, principal components analysis, nonnegative matrix factorization, and neural networks) are discussed as well. Each model's applicability and its pros and cons are explained. The choice of a suitable model is highly dependent on the research question, FFR recordings, target variables, extracted features, and their data types. To promote understanding, an example project implemented in Python is provided, which demonstrates practical usage of several of the discussed models on a sample dataset of six FFR features and a target response label.

Keywords

References

  1. Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):13022-7 [PMID: 19617560]
  2. J Speech Lang Hear Res. 2019 Mar 25;62(3):587-601 [PMID: 30950746]
  3. Int J Audiol. 2011 Sep;50(9):582-93 [PMID: 21722020]
  4. Clin Neurophysiol. 2001 May;112(5):758-67 [PMID: 11336890]
  5. Dev Sci. 2022 May;25(3):e13189 [PMID: 34758093]
  6. Audiology. 1979 Nov-Dec;18(6):494-506 [PMID: 526194]
  7. Ear Hear. 2010 Jun;31(3):302-24 [PMID: 20084007]
  8. Proc Natl Acad Sci U S A. 2013 Mar 12;110(11):4357-62 [PMID: 23401541]
  9. J Neural Eng. 2019 Jul 23;16(5):056004 [PMID: 31039552]
  10. Neuropsychologia. 2014 Sep;62:286-96 [PMID: 25111032]
  11. Electroencephalogr Clin Neurophysiol. 1994 Jul;92(4):321-30 [PMID: 7517854]
  12. Ear Hear. 2011 Nov-Dec;32(6):699-707 [PMID: 21543983]
  13. Sci Rep. 2016 Dec 22;6:39009 [PMID: 28005070]
  14. Ear Hear. 2016 Sep-Oct;37(5):e322-35 [PMID: 27556365]
  15. Behav Brain Res. 2005 Jan 6;156(1):95-103 [PMID: 15474654]
  16. Front Hum Neurosci. 2013 Dec 24;7:899 [PMID: 24399956]
  17. Nature. 1999 Oct 21;401(6755):788-91 [PMID: 10548103]
  18. Brain Res. 2010 Oct 8;1355:112-25 [PMID: 20691672]
  19. Percept Mot Skills. 2021 Feb;128(1):48-58 [PMID: 32962538]
  20. eNeuro. 2021 Dec 23;8(6): [PMID: 34799409]
  21. Hear J. 2013 Jan 1;66(1):36 [PMID: 24532952]
  22. Electroencephalogr Clin Neurophysiol. 1968 Jul;25(1):42-52 [PMID: 4174782]
  23. Int J Audiol. 2016;55(1):53-63 [PMID: 26305289]
  24. J Neurosci. 2013 Feb 20;33(8):3500-4 [PMID: 23426677]
  25. Proc Natl Acad Sci U S A. 2007 Oct 2;104(40):15894-8 [PMID: 17898180]
  26. Audiol Neurootol. 1999 Mar-Apr;4(2):95-103 [PMID: 9892760]
  27. Front Neurosci. 2021 Dec 20;15:747303 [PMID: 34987356]
  28. Nature. 2020 Sep;585(7825):357-362 [PMID: 32939066]
  29. J Perinatol. 2020 Feb;40(2):203-211 [PMID: 31263204]
  30. J Neurophysiol. 2021 Jan 1;125(1):273-281 [PMID: 33206575]
  31. Ear Hear. 2008 Jun;29(3):326-35 [PMID: 18453884]
  32. J Speech Lang Hear Res. 2020 May 22;63(5):1608-1617 [PMID: 32407656]
  33. Percept Mot Skills. 2014 Jun;118(3):681-90 [PMID: 25068740]
  34. J Neurolinguistics. 2010 Jan 1;23(1):81-95 [PMID: 20161561]
  35. Acta Otolaryngol. 2007 Apr;127(4):365-9 [PMID: 17453455]
  36. NPJ Sci Learn. 2020 Aug 6;5:12 [PMID: 32802406]
  37. Neuron. 2009 Nov 12;64(3):311-9 [PMID: 19914180]
  38. J Speech Lang Hear Res. 2017 Aug 22;:1-12 [PMID: 28832878]
  39. Hear Res. 2008 Nov;245(1-2):35-47 [PMID: 18765275]
  40. Sports Health. 2020 Mar/Apr;12(2):154-158 [PMID: 31813316]
  41. IEEE Trans Neural Netw. 2009 Jun;20(6):901-14 [PMID: 19398403]
  42. Neurosci Lett. 2017 Apr 12;646:21-23 [PMID: 28279706]
  43. Percept Mot Skills. 2010 Dec;111(3):765-84 [PMID: 21319616]
  44. Brain Behav. 2017 Apr 26;7(6):e00665 [PMID: 28638700]
  45. Hear Res. 2004 Mar;189(1-2):1-12 [PMID: 14987747]
  46. Neurosci Lett. 2002 Feb 15;319(2):111-5 [PMID: 11825683]
  47. Proc Natl Acad Sci U S A. 2012 May 15;109(20):7877-81 [PMID: 22547804]
  48. J Acoust Soc Am. 2016 Jun;139(6):EL190 [PMID: 27369171]
  49. Ear Hear. 2019 Jan/Feb;40(1):116-127 [PMID: 29757799]
  50. Neuroreport. 2004 Sep 15;15(13):2057-60 [PMID: 15486481]
  51. Brain Lang. 2009 Jan;108(1):1-9 [PMID: 18343493]
  52. J Speech Lang Hear Res. 2021 Jun 4;64(6):2085-2102 [PMID: 34057846]
  53. J Neurosci Methods. 2017 Nov 1;291:101-112 [PMID: 28807860]
  54. Hear Res. 2019 Jan;371:28-39 [PMID: 30448690]
  55. J Cogn Neurosci. 2008 Oct;20(10):1892-902 [PMID: 18370594]
  56. Hear Res. 2019 Oct;382:107779 [PMID: 31505395]
  57. Neuroscience. 2018 Aug 1;384:64-75 [PMID: 29802881]
  58. Audiol Neurootol. 2006;11(4):213-32 [PMID: 16612051]
  59. Biol Psychol. 2020 Jan;149:107807 [PMID: 31693923]
  60. Nat Neurosci. 2007 Apr;10(4):420-2 [PMID: 17351633]
  61. Hear Res. 2002 Apr;166(1-2):192-201 [PMID: 12062771]
  62. J Acoust Soc Am. 2015 Jun;137(6):3346-55 [PMID: 26093424]
  63. Front Psychol. 2013 Sep 19;4:622 [PMID: 24065935]
  64. Neuroreport. 2003 Apr 15;14(5):735-8 [PMID: 12692473]
  65. Audiol Neurootol. 2000 Nov-Dec;5(6):312-21 [PMID: 11025331]
  66. Int J Audiol. 2021 Sep;60(9):650-662 [PMID: 33439060]

Word Cloud

Created with Highcharts 10.0.0responseFFRmachinelearningfrequency-followinghumanseveralsupervisedmodelsregressionunsupervisedmodeldiscussedtargetfeaturesprovidesenrichedinformationacousticstimuliprocessedbrainBasedrecentstudiestechniquesdemonstratedgreatutilitymodelingFFRstutorialfocusesfundamentalprinciplesalgorithmicdesignscustomimplementationslinearlogistic-nearestneighborssupportvectormachines-meansclusteringusefultoolsMarkovchainsdimensionalityreductionprincipalcomponentsanalysisnonnegativematrixfactorizationneuralnetworkswellmodel'sapplicabilityprosconsexplainedchoicesuitablehighlydependentresearchquestionrecordingsvariablesextracteddatatypespromoteunderstandingexampleprojectimplementedPythonprovideddemonstratespracticalusagesampledatasetsixlabelImplementationMachineLearningHumanFrequency-FollowingResponses:Tutorial

Similar Articles

Cited By (1)