Neonatal Frequency-Following Responses: A Methodological Framework for Clinical Applications.

Natàlia Gorina-Careta, Teresa Ribas-Prats, Sonia Arenillas-Alcón, Marta Puertollano, M Dolores Gómez-Roig, Carles Escera
Author Information
  1. Natàlia Gorina-Careta: Brainlab - Cognitive Neuroscience Research Group, Department of Clinical Psychology and Psychobiology, University of Barcelona, Catalonia, Spain.
  2. Teresa Ribas-Prats: Brainlab - Cognitive Neuroscience Research Group, Department of Clinical Psychology and Psychobiology, University of Barcelona, Catalonia, Spain.
  3. Sonia Arenillas-Alcón: Brainlab - Cognitive Neuroscience Research Group, Department of Clinical Psychology and Psychobiology, University of Barcelona, Catalonia, Spain.
  4. Marta Puertollano: Brainlab - Cognitive Neuroscience Research Group, Department of Clinical Psychology and Psychobiology, University of Barcelona, Catalonia, Spain.
  5. M Dolores Gómez-Roig: Institut de Recerca Sant Joan de Déu (IRSJD), Barcelona, Catalonia, Spain.
  6. Carles Escera: Brainlab - Cognitive Neuroscience Research Group, Department of Clinical Psychology and Psychobiology, University of Barcelona, Catalonia, Spain.

Abstract

The frequency-following response (FFR) to periodic complex sounds is a noninvasive scalp-recorded auditory evoked potential that reflects synchronous phase-locked neural activity to the spectrotemporal components of the acoustic signal along the ascending auditory hierarchy. The FFR has gained recent interest in the fields of audiology and auditory cognitive neuroscience, as it has great potential to answer both basic and applied questions about processes involved in sound encoding, language development, and communication. Specifically, it has become a promising tool in neonates, as its study may allow both early identification of future language disorders and the opportunity to leverage brain plasticity during the first 2 years of life, as well as enable early interventions to prevent and/or ameliorate sound and language encoding disorders. Throughout the present review, we summarize the state of the art of the neonatal FFR and, based on our own extensive experience, present methodological approaches to record it in a clinical environment. Overall, the present review is the first one that comprehensively focuses on the neonatal FFRs applications, thus supporting the feasibility to record the FFR during the first days of life and the predictive potential of the neonatal FFR on detecting short- and long-term language abilities and disruptions.

Keywords

References

  1. Electroencephalogr Clin Neurophysiol. 1973 Dec;35(6):665-7 [PMID: 4128165]
  2. PLoS Biol. 2015 Jul 14;13(7):e1002196 [PMID: 26172057]
  3. Neuroreport. 2012 Jan 4;23(1):6-9 [PMID: 22113211]
  4. J Assoc Res Otolaryngol. 2001 Dec;2(4):297-311 [PMID: 11833605]
  5. Neuron. 2009 Nov 12;64(3):311-9 [PMID: 19914180]
  6. Dev Sci. 2022 May;25(3):e13189 [PMID: 34758093]
  7. Hear Res. 2008 Nov;245(1-2):35-47 [PMID: 18765275]
  8. Audiology. 1979 Nov-Dec;18(6):494-506 [PMID: 526194]
  9. J Speech Lang Hear Res. 2021 Jun 4;64(6):2085-2102 [PMID: 34057846]
  10. Hear Res. 2019 Jan;371:28-39 [PMID: 30448690]
  11. J Perinatol. 2000 Dec;20(8 Pt 2):S21-30 [PMID: 11190697]
  12. Paediatr Child Health. 2011 May;16(5):301-10 [PMID: 22547950]
  13. Dev Sci. 2009 Jul;12(4):557-67 [PMID: 19635083]
  14. Dev Psychobiol. 2018 Apr;60(3):256-264 [PMID: 29355936]
  15. Ear Hear. 2011 Nov-Dec;32(6):699-707 [PMID: 21543983]
  16. Behav Brain Res. 2005 Jan 6;156(1):95-103 [PMID: 15474654]
  17. Nat Commun. 2019 Nov 6;10(1):5036 [PMID: 31695046]
  18. J Neurosci. 2005 Oct 26;25(43):9850-7 [PMID: 16251432]
  19. Brain Topogr. 2014 Jul;27(4):539-52 [PMID: 24150692]
  20. Pediatr Res. 2017 Mar;81(3):415-422 [PMID: 27861465]
  21. Hear Res. 2021 Aug;407:108277 [PMID: 34091212]
  22. J Neurosci. 2013 Feb 20;33(8):3500-4 [PMID: 23426677]
  23. Proc Natl Acad Sci U S A. 2007 Oct 2;104(40):15894-8 [PMID: 17898180]
  24. Neuron. 2010 Sep 9;67(5):713-27 [PMID: 20826304]
  25. Braz J Otorhinolaryngol. 2020 Mar - Apr;86(2):191-200 [PMID: 30683567]
  26. J Assoc Res Otolaryngol. 2014 Aug;15(4):621-30 [PMID: 24845402]
  27. Dev Sci. 2010 Jan 1;13(1):77-91 [PMID: 20121865]
  28. J Perinatol. 2020 Feb;40(2):203-211 [PMID: 31263204]
  29. Neurosci Lett. 2000 Oct 6;292(2):123-7 [PMID: 10998564]
  30. Biol Psychol. 2004 Nov;67(3):299-317 [PMID: 15294388]
  31. Psychophysiology. 2015 Apr;52(4):594-9 [PMID: 25329609]
  32. J Cogn Neurosci. 2007 Mar;19(3):376-85 [PMID: 17335387]
  33. Sci Rep. 2021 Mar 23;11(1):6660 [PMID: 33758251]
  34. Ear Hear. 2010 Jun;31(3):302-24 [PMID: 20084007]
  35. J Speech Lang Hear Res. 2011 Feb;54(1):228-42 [PMID: 20689038]
  36. Sci Rep. 2019 Dec 20;9(1):19592 [PMID: 31862999]
  37. J Speech Lang Hear Res. 2017 Aug 22;60(9):2740-2751 [PMID: 28832878]
  38. Ear Hear. 2023 Jul-Aug 01;44(4):829-841 [PMID: 36759954]
  39. Cereb Cortex. 2009 Nov;19(11):2699-707 [PMID: 19293398]
  40. J Acoust Soc Am. 2016 Jun;139(6):EL190 [PMID: 27369171]
  41. Hear Res. 2019 Oct;382:107779 [PMID: 31505395]
  42. Psychophysiology. 2010 Mar 1;47(2):236-46 [PMID: 19824950]
  43. J Dermatol Sci. 1991 Sep;2(5):336-40 [PMID: 1742243]
  44. J Speech Lang Hear Res. 2020 May 22;63(5):1618-1635 [PMID: 32407639]
  45. J Neurosci. 2006 Oct 25;26(43):11131-7 [PMID: 17065453]
  46. Sci Rep. 2016 Nov 17;6:37405 [PMID: 27853313]
  47. Brain Res. 2015 Nov 11;1626:146-64 [PMID: 26187756]
  48. Nat Neurosci. 2007 Apr;10(4):420-2 [PMID: 17351633]
  49. Neuroimage. 2021 May 1;231:117866 [PMID: 33592244]
  50. J Acoust Soc Am. 2015 Jun;137(6):3346-55 [PMID: 26093424]
  51. Exp Brain Res. 2018 Mar;236(3):733-743 [PMID: 29306985]
  52. Clin Neurophysiol. 2004 Sep;115(9):2021-30 [PMID: 15294204]
  53. J Am Acad Audiol. 2002 Apr;13(4):188-204 [PMID: 12025895]
  54. Dev Sci. 2020 Nov;23(6):e12945 [PMID: 32034978]
  55. Clin Neurophysiol. 2017 Mar;128(3):484-494 [PMID: 28131533]

Word Cloud

Created with Highcharts 10.0.0FFRlanguageauditorypotentialencodingfirstpresentneonatalresponsesoundearlydisorderslifereviewrecordspeechfrequency-followingperiodiccomplexsoundsnoninvasivescalp-recordedevokedreflectssynchronousphase-lockedneuralactivityspectrotemporalcomponentsacousticsignalalongascendinghierarchygainedrecentinterestfieldsaudiologycognitiveneurosciencegreatanswerbasicappliedquestionsprocessesinvolveddevelopmentcommunicationSpecificallybecomepromisingtoolneonatesstudymayallowidentificationfutureopportunityleveragebrainplasticity2yearswellenableinterventionspreventand/orameliorateThroughoutsummarizestateartbasedextensiveexperiencemethodologicalapproachesclinicalenvironmentOverallonecomprehensivelyfocusesFFRsapplicationsthussupportingfeasibilitydayspredictivedetectingshort-long-termabilitiesdisruptionsNeonatalFrequency-FollowingResponses:MethodologicalFrameworkClinicalApplicationsbrainsteminfantsnewbornsABR

Similar Articles

Cited By