BAP1 in cancer: epigenetic stability and genome integrity.

Sabrina Caporali, Alessio Butera, Ivano Amelio
Author Information
  1. Sabrina Caporali: Chair for Systems Toxicology, Department of Biology, University of Konstanz, 78464, Constance, Germany.
  2. Alessio Butera: Chair for Systems Toxicology, Department of Biology, University of Konstanz, 78464, Constance, Germany.
  3. Ivano Amelio: Chair for Systems Toxicology, Department of Biology, University of Konstanz, 78464, Constance, Germany. ivano.amelio@uni-konstanz.de.

Abstract

Mutations in BAP1 have been identified in a hereditary cancer predisposition syndrome and in sporadic tumours. Individuals carrying familiar BAP1 monoallelic mutations display hypersusceptibility to exposure-associated cancers, such as asbestos-driven mesothelioma, thus BAP1 status has been postulated to participate in gene-environment interaction. Intriguingly, BAP1 functions display also a high degree of tissue dependency, associated to a peculiar cancer spectrum and cell types of specific functions. Mechanistically, BAP1 functions as an ubiquitin carboxy-terminal hydrolase (UCH) and controls regulatory ubiquitination of histones as well as degradative ubiquitination of a range of protein substrates. In this article we provide an overview of the most relevant findings on BAP1, underpinning its tissue specific tumour suppressor function. We also discuss the importance of its epigenetic role versus the control of protein stability in the regulation of genomic integrity.

References

  1. Cancer Discov. 2017 Aug;7(8):900-917 [PMID: 28473526]
  2. Cancer Res. 2014 Aug 15;74(16):4282-94 [PMID: 24894717]
  3. Nat Commun. 2020 Jun 15;11(1):3018 [PMID: 32541668]
  4. Mol Cell. 2021 Sep 2;81(17):3526-3541.e8 [PMID: 34186021]
  5. Biol Direct. 2021 Oct 21;16(1):19 [PMID: 34674746]
  6. Leukemia. 2018 Aug;32(8):1834-1837 [PMID: 29743720]
  7. Discov Oncol. 2021 Jul 9;12(1):21 [PMID: 35201451]
  8. Science. 2012 Sep 21;337(6101):1541-6 [PMID: 22878500]
  9. Nat Med. 2015 Nov;21(11):1344-9 [PMID: 26437366]
  10. Cancers (Basel). 2021 Apr 03;13(7): [PMID: 33916693]
  11. Nat Cell Biol. 2018 Oct;20(10):1181-1192 [PMID: 30202049]
  12. Mol Oncol. 2022 Feb;16(3):607-629 [PMID: 34706158]
  13. Am J Cancer Res. 2020 May 01;10(5):1455-1466 [PMID: 32509391]
  14. Mol Cell. 2014 May 8;54(3):392-406 [PMID: 24703950]
  15. Mol Cancer. 2020 Mar 4;19(1):52 [PMID: 32127003]
  16. Cancer Res. 2009 Jan 1;69(1):111-9 [PMID: 19117993]
  17. J Exp Med. 2020 Jun 1;217(6): [PMID: 32271879]
  18. Discov Oncol. 2021 Apr 26;12(1):12 [PMID: 35201457]
  19. Biol Direct. 2021 Dec 9;16(1):25 [PMID: 34886882]
  20. Oncogene. 1998 Mar 5;16(9):1097-112 [PMID: 9528852]
  21. Oncogene. 2016 Feb 4;35(5):537-48 [PMID: 25893302]
  22. J Mol Biol. 2021 Jul 23;433(15):167094 [PMID: 34119490]
  23. Mol Oncol. 2021 Jan;15(1):279-298 [PMID: 33155366]
  24. Cell Death Differ. 2021 Mar;28(3):932-951 [PMID: 33009518]
  25. Mol Cancer Ther. 2016 Oct;15(10):2498-2507 [PMID: 27507853]
  26. Biol Direct. 2020 Oct 14;15(1):18 [PMID: 33054808]
  27. Proc Natl Acad Sci U S A. 2020 Sep 22;117(38):23261-23269 [PMID: 31624126]
  28. Nat Rev Drug Discov. 2020 Nov;19(11):776-800 [PMID: 32929243]
  29. Nat Immunol. 2021 Dec;22(12):1479-1489 [PMID: 34795445]
  30. Discov Oncol. 2021 Nov 24;12(1):54 [PMID: 35201498]
  31. Nat Commun. 2020 Nov 23;11(1):5947 [PMID: 33230107]
  32. Nat Commun. 2021 Sep 13;12(1):5402 [PMID: 34518527]
  33. Trends Genet. 2018 Mar;34(3):209-217 [PMID: 29269261]
  34. Cell Death Differ. 2021 Feb;28(2):538-556 [PMID: 33335288]
  35. Cancer Discov. 2020 Aug;10(8):1103-1120 [PMID: 32690542]
  36. Nat Rev Cancer. 2010 May;10(5):361-71 [PMID: 20357775]
  37. Clin Cancer Res. 2019 Sep 15;25(18):5663-5673 [PMID: 31285370]
  38. Cancer Res. 2020 Apr 15;80(8):1656-1668 [PMID: 31988076]
  39. Cell Res. 2015 Nov;25(11):1205-18 [PMID: 26470845]
  40. Cancer Treat Rev. 2020 Nov;90:102091 [PMID: 32877777]
  41. Life Sci. 2021 Jan 1;264:118632 [PMID: 33115605]
  42. J Immunother Cancer. 2020 Apr;8(1): [PMID: 32371459]
  43. J Clin Invest. 2022 Sep 1;132(17): [PMID: 35852856]
  44. Cancer Metastasis Rev. 2017 Mar;36(1):109-140 [PMID: 28229253]
  45. Cell Death Differ. 2021 Oct;28(10):2931-2945 [PMID: 33972717]
  46. Cancer Discov. 2012 May;2(5):401-4 [PMID: 22588877]
  47. PLoS Genet. 2018 Jun 7;14(6):e1007362 [PMID: 29879107]
  48. Eye (Lond). 2017 Feb;31(2):241-257 [PMID: 27911450]
  49. Oncogene. 2022 Apr;41(15):2152-2162 [PMID: 35194152]
  50. Nat Rev Dis Primers. 2020 Apr 9;6(1):24 [PMID: 32273508]
  51. Nat Rev Cancer. 2020 Sep;20(9):533-549 [PMID: 32472073]
  52. Clin Cancer Res. 2018 Feb 1;24(3):600-607 [PMID: 29113987]
  53. Nature. 2017 Jun 22;546(7659):549-553 [PMID: 28614305]
  54. Biol Direct. 2021 Aug 6;16(1):14 [PMID: 34362419]
  55. Cancer Lett. 2015 Dec 1;369(1):167-74 [PMID: 26300492]
  56. Cancers (Basel). 2019 Aug 02;11(8): [PMID: 31382450]
  57. Cell Death Differ. 2021 Feb;28(2):606-625 [PMID: 33462414]
  58. Cell Death Dis. 2018 Oct 10;9(10):1036 [PMID: 30305612]
  59. J Pathol Transl Med. 2018 Nov;52(6):378-385 [PMID: 30269473]
  60. CA Cancer J Clin. 2019 Sep;69(5):402-429 [PMID: 31283845]
  61. Genome Res. 2020 Aug;30(8):1119-1130 [PMID: 32747411]
  62. Genes Dev. 2017 Apr 15;31(8):724-743 [PMID: 28512236]
  63. Science. 2019 Apr 19;364(6437):283-285 [PMID: 31000662]
  64. Nat Commun. 2018 Sep 26;9(1):3932 [PMID: 30258054]
  65. Cell Death Differ. 2022 Jan;29(1):133-146 [PMID: 34363018]
  66. Cell Death Discov. 2021 Jan 22;7(1):20 [PMID: 33483476]
  67. Proc Natl Acad Sci U S A. 2021 Nov 30;118(48): [PMID: 34815344]
  68. Discov Oncol. 2021 Aug 18;12(1):27 [PMID: 35201440]
  69. Prog Retin Eye Res. 2020 Mar;75:100800 [PMID: 31563544]
  70. Precis Cancer Med. 2021 Sep;4: [PMID: 35098108]
  71. Nat Commun. 2015 Sep 30;6:8471 [PMID: 26419610]
  72. Nat Commun. 2020 May 15;11(1):2408 [PMID: 32415113]
  73. Nat Cancer. 2021 May;2(5):515-526 [PMID: 35122023]
  74. Nat Rev Nephrol. 2021 Apr;17(4):245-261 [PMID: 33144689]
  75. Cell Death Differ. 2021 Jun;28(6):1990-2000 [PMID: 33462406]

Word Cloud

Created with Highcharts 10.0.0BAP1functionscancerdisplayalsotissuespecificubiquitinationproteinepigeneticstabilityintegrityMutationsidentifiedhereditarypredispositionsyndromesporadictumoursIndividualscarryingfamiliarmonoallelicmutationshypersusceptibilityexposure-associatedcancersasbestos-drivenmesotheliomathusstatuspostulatedparticipategene-environmentinteractionIntriguinglyhighdegreedependencyassociatedpeculiarspectrumcelltypesMechanisticallyubiquitincarboxy-terminalhydrolaseUCHcontrolsregulatoryhistoneswelldegradativerangesubstratesarticleprovideoverviewrelevantfindingsunderpinningtumoursuppressorfunctiondiscussimportanceroleversuscontrolregulationgenomiccancer:genome

Similar Articles

Cited By (9)