Interfacial electric fields catalyze Ullmann coupling reactions on gold surfaces.
Ilana B Stone, Rachel L Starr, Norah Hoffmann, Xiao Wang, Austin M Evans, Colin Nuckolls, Tristan H Lambert, Michael L Steigerwald, Timothy C Berkelbach, Xavier Roy, Latha Venkataraman
Author Information
Ilana B Stone: Department of Chemistry, Columbia University New York New York 10027 USA tcb2112@columbia.edu xr2114@columbia.edu lv2117@columbia.edu.
Rachel L Starr: Department of Chemistry, Columbia University New York New York 10027 USA tcb2112@columbia.edu xr2114@columbia.edu lv2117@columbia.edu. ORCID
Norah Hoffmann: Department of Chemistry, Columbia University New York New York 10027 USA tcb2112@columbia.edu xr2114@columbia.edu lv2117@columbia.edu.
Xiao Wang: Center for Computational Quantum Physics, Flatiron Institute New York New York 10010 USA.
Austin M Evans: Department of Chemistry, Columbia University New York New York 10027 USA tcb2112@columbia.edu xr2114@columbia.edu lv2117@columbia.edu.
Colin Nuckolls: Department of Chemistry, Columbia University New York New York 10027 USA tcb2112@columbia.edu xr2114@columbia.edu lv2117@columbia.edu. ORCID
Tristan H Lambert: Department of Chemistry and Chemical Biology, Cornell University Ithaca New York 14853 USA. ORCID
Michael L Steigerwald: Department of Chemistry, Columbia University New York New York 10027 USA tcb2112@columbia.edu xr2114@columbia.edu lv2117@columbia.edu.
Timothy C Berkelbach: Department of Chemistry, Columbia University New York New York 10027 USA tcb2112@columbia.edu xr2114@columbia.edu lv2117@columbia.edu.
Xavier Roy: Department of Chemistry, Columbia University New York New York 10027 USA tcb2112@columbia.edu xr2114@columbia.edu lv2117@columbia.edu. ORCID
Latha Venkataraman: Department of Chemistry, Columbia University New York New York 10027 USA tcb2112@columbia.edu xr2114@columbia.edu lv2117@columbia.edu. ORCID
The electric fields created at solid-liquid interfaces are important in heterogeneous catalysis. Here we describe the Ullmann coupling of aryl iodides on rough gold surfaces, which we monitor using the scanning tunneling microscope-based break junction (STM-BJ) and using mass spectrometry and fluorescence spectroscopy. We find that this Ullmann coupling reaction occurs only on rough gold surfaces in polar solvents, the latter of which implicates interfacial electric fields. These experimental observations are supported by density functional theory calculations that elucidate the roles of surface roughness and local electric fields on the reaction. More broadly, this touchstone study offers a facile method to access and probe in real time an increasingly prominent yet incompletely understood mode of catalysis.
References
Chem Commun (Camb). 2012 Dec 21;48(98):12005-7
[PMID: 23128357]
J Am Chem Soc. 2017 Oct 25;139(42):14845-14848
[PMID: 28981277]
J Am Chem Soc. 2011 Aug 31;133(34):13264-7
[PMID: 21761920]
ACS Cent Sci. 2020 Feb 26;6(2):304-311
[PMID: 32123749]
J Am Chem Soc. 2021 Jul 21;143(28):10778-10792
[PMID: 34253024]
Phys Rev Lett. 2000 Sep 25;85(13):2777-80
[PMID: 10991231]
Nat Nanotechnol. 2011 May 08;6(6):353-7
[PMID: 21552252]