Interfacial electric fields catalyze Ullmann coupling reactions on gold surfaces.

Ilana B Stone, Rachel L Starr, Norah Hoffmann, Xiao Wang, Austin M Evans, Colin Nuckolls, Tristan H Lambert, Michael L Steigerwald, Timothy C Berkelbach, Xavier Roy, Latha Venkataraman
Author Information
  1. Ilana B Stone: Department of Chemistry, Columbia University New York New York 10027 USA tcb2112@columbia.edu xr2114@columbia.edu lv2117@columbia.edu.
  2. Rachel L Starr: Department of Chemistry, Columbia University New York New York 10027 USA tcb2112@columbia.edu xr2114@columbia.edu lv2117@columbia.edu. ORCID
  3. Norah Hoffmann: Department of Chemistry, Columbia University New York New York 10027 USA tcb2112@columbia.edu xr2114@columbia.edu lv2117@columbia.edu.
  4. Xiao Wang: Center for Computational Quantum Physics, Flatiron Institute New York New York 10010 USA.
  5. Austin M Evans: Department of Chemistry, Columbia University New York New York 10027 USA tcb2112@columbia.edu xr2114@columbia.edu lv2117@columbia.edu.
  6. Colin Nuckolls: Department of Chemistry, Columbia University New York New York 10027 USA tcb2112@columbia.edu xr2114@columbia.edu lv2117@columbia.edu. ORCID
  7. Tristan H Lambert: Department of Chemistry and Chemical Biology, Cornell University Ithaca New York 14853 USA. ORCID
  8. Michael L Steigerwald: Department of Chemistry, Columbia University New York New York 10027 USA tcb2112@columbia.edu xr2114@columbia.edu lv2117@columbia.edu.
  9. Timothy C Berkelbach: Department of Chemistry, Columbia University New York New York 10027 USA tcb2112@columbia.edu xr2114@columbia.edu lv2117@columbia.edu.
  10. Xavier Roy: Department of Chemistry, Columbia University New York New York 10027 USA tcb2112@columbia.edu xr2114@columbia.edu lv2117@columbia.edu. ORCID
  11. Latha Venkataraman: Department of Chemistry, Columbia University New York New York 10027 USA tcb2112@columbia.edu xr2114@columbia.edu lv2117@columbia.edu. ORCID

Abstract

The electric fields created at solid-liquid interfaces are important in heterogeneous catalysis. Here we describe the Ullmann coupling of aryl iodides on rough gold surfaces, which we monitor using the scanning tunneling microscope-based break junction (STM-BJ) and using mass spectrometry and fluorescence spectroscopy. We find that this Ullmann coupling reaction occurs only on rough gold surfaces in polar solvents, the latter of which implicates interfacial electric fields. These experimental observations are supported by density functional theory calculations that elucidate the roles of surface roughness and local electric fields on the reaction. More broadly, this touchstone study offers a facile method to access and probe in real time an increasingly prominent yet incompletely understood mode of catalysis.

References

  1. Chem Commun (Camb). 2012 Dec 21;48(98):12005-7 [PMID: 23128357]
  2. J Am Chem Soc. 2017 Oct 25;139(42):14845-14848 [PMID: 28981277]
  3. J Am Chem Soc. 2011 Aug 31;133(34):13264-7 [PMID: 21761920]
  4. ACS Cent Sci. 2020 Feb 26;6(2):304-311 [PMID: 32123749]
  5. J Am Chem Soc. 2021 Jul 21;143(28):10778-10792 [PMID: 34253024]
  6. Phys Rev Lett. 2000 Sep 25;85(13):2777-80 [PMID: 10991231]
  7. Nat Nanotechnol. 2011 May 08;6(6):353-7 [PMID: 21552252]
  8. Nat Nanotechnol. 2007 Nov;2(11):687-91 [PMID: 18654406]
  9. Phys Rev Lett. 2009 Mar 27;102(12):126803 [PMID: 19392306]
  10. Chem Commun (Camb). 2011 Feb 7;47(5):1446-8 [PMID: 21183985]
  11. Chem Commun (Camb). 2017 Jul 11;53(56):7872-7885 [PMID: 28649683]
  12. Nano Lett. 2014 Mar 12;14(3):1400-4 [PMID: 24490721]
  13. Angew Chem Int Ed Engl. 2015 Dec 7;54(50):15022-45 [PMID: 26768342]
  14. J Phys Chem B. 2021 Mar 18;125(10):2741-2753 [PMID: 33689335]
  15. Nat Chem. 2012 Jan 15;4(3):215-20 [PMID: 22354436]
  16. Nature. 2006 Aug 24;442(7105):904-7 [PMID: 16929295]
  17. ACS Cent Sci. 2021 Jun 23;7(6):1045-1055 [PMID: 34235265]
  18. Org Prep Proced Int. 2013;45(5): [PMID: 24223434]
  19. Acc Chem Res. 2015 Oct 20;48(10):2765-74 [PMID: 26317241]
  20. Nature. 2010 Jul 22;466(7305):470-3 [PMID: 20651687]
  21. Nat Commun. 2019 Oct 2;10(1):4482 [PMID: 31578333]
  22. ACS Appl Mater Interfaces. 2018 Oct 3;10(39):33678-33683 [PMID: 30187745]
  23. Chem Rev. 2021 Jul 28;121(14):8364-8451 [PMID: 32966741]
  24. J Am Chem Soc. 2017 Feb 15;139(6):2369-2378 [PMID: 28103437]
  25. J Am Chem Soc. 2019 Oct 2;141(39):15524-15531 [PMID: 31433173]
  26. Trends Chem. 2020 Aug;2(8):707-720 [PMID: 34341775]
  27. J Phys Chem Lett. 2016 Jun 16;7(12):2157-63 [PMID: 27216986]
  28. Chem Commun (Camb). 2014 Sep 11;50(70):10035-7 [PMID: 25051314]
  29. J Am Chem Soc. 2013 Apr 17;135(15):5768-75 [PMID: 23506285]
  30. J Am Chem Soc. 2002 Mar 20;124(11):2408-9 [PMID: 11890768]
  31. Chem Rev. 2019 Apr 10;119(7):4717-4776 [PMID: 30875199]
  32. J Am Chem Soc. 2020 Jun 3;142(22):9955-9965 [PMID: 32369357]
  33. Nat Chem. 2020 Feb;12(2):115-130 [PMID: 31996811]

Word Cloud

Created with Highcharts 10.0.0electricfieldsUllmanncouplinggoldsurfacescatalysisroughusingreactioncreatedsolid-liquidinterfacesimportantheterogeneousdescribearyliodidesmonitorscanningtunnelingmicroscope-basedbreakjunctionSTM-BJmassspectrometryfluorescencespectroscopyfindoccurspolarsolventslatterimplicatesinterfacialexperimentalobservationssupporteddensityfunctionaltheorycalculationselucidaterolessurfaceroughnesslocalbroadlytouchstonestudyoffersfacilemethodaccessproberealtimeincreasinglyprominentyetincompletelyunderstoodmodeInterfacialcatalyzereactions

Similar Articles

Cited By