Virtual screening for potential discoidin domain receptor 1 (DDR1) inhibitors based on structural assessment.

Jiali Xie, Dan Meng, Yihao Li, Ruoyu Li, Ping Deng
Author Information
  1. Jiali Xie: College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China. ORCID
  2. Dan Meng: College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China.
  3. Yihao Li: College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China.
  4. Ruoyu Li: College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China.
  5. Ping Deng: College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China. 100865@cqmu.edu.cn. ORCID

Abstract

Discoidin domain receptor 1 (DDR1) (EC Number 2.7.10.1) has recently been considered as a promising therapeutic target for idiopathic pulmonary fibrosis (IPF). However, none of the currently discovered DDR1 inhibitors have been included in clinical studies due to low target specificity or druggability limitations, necessitating various approaches to develop novel DDR1 inhibitors. In this study, to assure target specificity, a docking assessment of the DDR1 crystal structures was undertaken to find the well-differentiated crystal structure, and 4CKR was identified among many crystal structures. Then, using the best pharmacophore model and molecular docking, virtual screening of the ChEMBL database was done, and five potential molecules were identified as promising inhibitors of DDR1. Subsequently, all hit compound complex systems were validated using molecular dynamics simulations and MM/PBSA methods to assess the stability of the system after ligand binding to DDR1. Based on molecular dynamics simulations and hydrogen-bonding occupancy analysis, the DDR1-Cpd2, DDR1-Cpd17, and DDR1-Cpd18 complex systems exhibited superior stability compared to the DDR1-Cpd1 and DDR-Cpd33 complex systems. Meanwhile, when targeting DDR1, the descending order of the five hit molecules' binding free energies was Cpd17 (- 145.820 kJ/mol) > Cpd2 (- 131.818 kJ/mol) > Cpd18 (- 130.692 kJ/mol) > Cpd33 (- 129.175 kJ/mol) > Cpd1 (- 126.103 kJ/mol). Among them, Cpd2, Cpd17, and Cpd18 showed improved binding characteristics, indicating that they may be potential DDR1 inhibitors. In this research, we developed a high-hit rate, effective screening method that serves as a theoretical guide for finding DDR1 inhibitors for the development of IPF therapeutics.

Keywords

References

  1. Dong Y, Tang BX, Wang Q, Zhou LW, Li C, Zhang X, Sun DD, Sun X, Zhang XM, Xiong B, Li J, Shi H, Chen DQ, Zang Y (2022) Discovery of a novel DDRs kinase inhibitor XBLJ-13 for the treatment of idiopathic pulmonary fibrosis. Acta Pharmacol Sin 43(7):1769–1779. https://doi.org/10.1038/s41401-021-00808-z [DOI: 10.1038/s41401-021-00808-z]
  2. Tao J, Zhang M, Wen Z, Wang B, Zhang L, Ou Y, Tang X, Yu X, Jiang Q (2018) Inhibition of EP300 and DDR1 synergistically alleviates pulmonary fibrosis in vitro and in vivo. Biomed Pharmacother 106:1727–1733. https://doi.org/10.1016/j.biopha.2018.07.132 [DOI: 10.1016/j.biopha.2018.07.132]
  3. Avivi-Green C, Singal M, Vogel WF (2006) Discoidin domain receptor 1-deficient mice are resistant to bleomycin-induced lung fibrosis. Am J Respir Crit Care Med 174(4):420–427. https://doi.org/10.1164/rccm.200603-333OC [DOI: 10.1164/rccm.200603-333OC]
  4. Glass DS, Grossfeld D, Renna HA, Agarwala P, Spiegler P, Kasselman LJ, Glass AD, DeLeon J, Reiss AB (2020) Idiopathic pulmonary fibrosis: molecular mechanisms and potential treatment approaches. Respir Investig 58(5):320–335. https://doi.org/10.1016/j.resinv.2020.04.002 [DOI: 10.1016/j.resinv.2020.04.002]
  5. Rackov G, Hernández-Jiménez E, Shokri R, Carmona-Rodríguez L, Mañes S, Álvarez-Mon M, López-Collazo E, Martínez-A C, Balomenos D (2016) p21 mediates macrophage reprogramming through regulation of p50–p50 NF-κB and IFN-β. J Clin Investig 126(8):3089–3103. https://doi.org/10.1172/JCI83404 [DOI: 10.1172/JCI83404]
  6. Valiathan RR, Marco M, Leitinger B, Kleer CG, Fridman R (2012) Discoidin domain receptor tyrosine kinases: new players in cancer progression. Cancer Metastasis Rev 31(1–2):295–321. https://doi.org/10.1007/s10555-012-9346-z [DOI: 10.1007/s10555-012-9346-z]
  7. Kothiwale S, Borza CM, Lowe EW Jr, Pozzi A, Meiler J (2015) Discoidin domain receptor 1 (DDR1) kinase as target for structure-based drug discovery. Drug Discov Today 20(2):255–261. https://doi.org/10.1016/j.drudis.2014.09.025 [DOI: 10.1016/j.drudis.2014.09.025]
  8. Leitinger B (2014) Discoidin domain receptor functions in physiological and pathological conditions. Int Rev Cell Mol Biol 310:39–87. https://doi.org/10.1016/B978-0-12-800180-6.00002-5 [DOI: 10.1016/B978-0-12-800180-6.00002-5]
  9. Yoshida D, Teramoto A (2007) Enhancement of pituitary adenoma cell invasion and adhesion is mediated by discoidin domain receptor-1. J Neurooncol 82(1):29–40. https://doi.org/10.1007/s11060-006-9246-6 [DOI: 10.1007/s11060-006-9246-6]
  10. Vogel WF, Abdulhussein R, Ford CE (2006) Sensing extracellular matrix: an update on discoidin domain receptor function. Cell Signal 18(8):1108–1116. https://doi.org/10.1016/j.cellsig.2006.02.012 [DOI: 10.1016/j.cellsig.2006.02.012]
  11. Borza CM, Pozzi A (2014) Discoidin domain receptors in disease. Matrix Biol 34:185–192. https://doi.org/10.1016/j.matbio.2013.12.002 [DOI: 10.1016/j.matbio.2013.12.002]
  12. Ju GX, Hu YB, Du MR, Jiang JL (2015) Discoidin domain receptors (DDRs): potential implications in atherosclerosis. Eur J Pharmacol 751:28–33. https://doi.org/10.1016/j.ejphar.2015.01.033 [DOI: 10.1016/j.ejphar.2015.01.033]
  13. Sakamoto O, Suga M, Suda T, Ando M (2001) Expression of discoidin domain receptor 1 tyrosine kinase on the human bronchial epithelium. Eur Respir J 17(5):969–974. https://doi.org/10.1183/09031936.01.17509690 [DOI: 10.1183/09031936.01.17509690]
  14. Canning P, Tan L, Chu K, Lee SW, Gray NS, Bullock AN (2014) Structural mechanisms determining inhibition of the collagen receptor DDR1 by selective and multi-targeted type II kinase inhibitors. J Mol Biol 426(13):2457–2470. https://doi.org/10.1016/j.jmb.2014.04.014 [DOI: 10.1016/j.jmb.2014.04.014]
  15. Hanson SM, Georghiou G, Thakur MK, Miller WT, Rest JS, Chodera JD, Seeliger MA (2019) What makes a kinase promiscuous for inhibitors? Cell Chem Biol 26(3):390-399.e5. https://doi.org/10.1016/j.chembiol.2018.11.005 [DOI: 10.1016/j.chembiol.2018.11.005]
  16. Kim HG, Tan L, Weisberg EL, Liu F, Canning P, Choi HG, Ezell SA, Wu H, Zhao Z, Wang J, Mandinova A, Griffin JD, Bullock AN, Liu Q, Lee SW, Gray NS (2013) Discovery of a potent and selective DDR1 receptor tyrosine kinase inhibitor. ACS Chem Biol 8(10):2145–2150. https://doi.org/10.1021/cb400430t [DOI: 10.1021/cb400430t]
  17. Wang Z, Bian H, Bartual SG, Du W, Luo J, Zhao H, Zhang S, Mo C, Zhou Y, Xu Y, Tu Z, Ren X, Lu X, Brekken RA, Yao L, Bullock AN, Su J, Ding K (2016) Structure-based design of tetrahydroisoquinoline-7-carboxamides as selective Discoidin Domain Receptor 1 (DDR1) inhibitors. J Med Chem 59(12):5911–5916. https://doi.org/10.1021/acs.jmedchem.6b00140 [DOI: 10.1021/acs.jmedchem.6b00140]
  18. Vanajothi R, Hemamalini V, Jeyakanthan J, Premkumar K (2020) Ligand-based pharmacophore mapping and virtual screening for identification of potential discoidin domain receptor 1 inhibitors. J Biomol Struct Dyn 38(9):2800–2808. https://doi.org/10.1080/07391102.2019.1640132 [DOI: 10.1080/07391102.2019.1640132]
  19. Nada H, Lee K, Gotina L, Pae AN, Elkamhawy A (2022) Identification of novel discoidin domain receptor 1 (DDR1) inhibitors using E-pharmacophore modeling, structure-based virtual screening, molecular dynamics simulation and MM-GBSA approaches. Comput Biol Med 142:105217. https://doi.org/10.1016/j.compbiomed.2022.105217 [DOI: 10.1016/j.compbiomed.2022.105217]
  20. Zhavoronkov A, Ivanenkov YA, Aliper A, Veselov MS, Aladinskiy VA, Aladinskaya AV, Terentiev VA, Polykovskiy DA, Kuznetsov MD, Asadulaev A, Volkov Y, Zholus A, Shayakhmetov RR, Zhebrak A, Minaeva LI, Zagribelnyy BA, Lee LH, Soll R, Madge D, Xing L et al (2019) Deep learning enables rapid identification of potent DDR1 kinase inhibitors. Nat Biotechnol 37(9):1038–1040. https://doi.org/10.1038/s41587-019-0224-x [DOI: 10.1038/s41587-019-0224-x]
  21. Yoshimori A, Asawa Y, Kawasaki E, Tasaka T, Matsuda S, Sekikawa T, Tanabe S, Neya M, Natsugari H, Kanai C (2021) Design and synthesis of DDR1 inhibitors with a desired pharmacophore using deep generative models. ChemMedChem 16(6):955–958. https://doi.org/10.1002/cmdc.202000786 [DOI: 10.1002/cmdc.202000786]
  22. Tan X, Li C, Yang R, Zhao S, Li F, Li X, Chen L, Wan X, Liu X, Yang T, Tong X, Xu T, Cui R, Jiang H, Zhang S, Liu H, Zheng M (2022) Discovery of pyrazolo[3,4-d] pyridazinone derivatives as selective DDR1 inhibitors via deep learning based design, synthesis, and biological evaluation. J Med Chem 65(1):103–119. https://doi.org/10.1021/acs.jmedchem.1c01205 [DOI: 10.1021/acs.jmedchem.1c01205]
  23. Ge H, Peng L, Sun Z, Liu H, Shen Y, Yao X (2022) Discovery of novel HPK1 inhibitors through structure-based virtual screening. Front Pharmacol 13:850855. https://doi.org/10.3389/fphar.2022.850855 [DOI: 10.3389/fphar.2022.850855]
  24. Murray CW, Berdini V, Buck IM, Carr ME, Cleasby A, Coyle JE, Curry JE, Day JE, Day PJ, Hearn K, Iqbal A, Lee LY, Martins V, Mortenson PN, Munck JM, Page LW, Patel S, Roomans S, Smith K, Tamanini E et al (2015) Fragment-based discovery of potent and selective DDR1/2 inhibitors. ACS Med Chem Lett 6(7):798–803. https://doi.org/10.1021/acsmedchemlett.5b00143 [DOI: 10.1021/acsmedchemlett.5b00143]
  25. Richter H, Satz AL, Bedoucha M, Buettelmann B, Petersen AC, Harmeier A, Hermosilla R, Hochstrasser R, Burger D, Gsell B, Gasser R, Huber S, Hug MN, Kocer B, Kuhn B, Ritter M, Rudolph MG, Weibel F, Molina-David J, Kim JJ et al (2019) DNA-encoded library-derived DDR1 inhibitor prevents fibrosis and renal function loss in a genetic mouse model of alport syndrome. ACS Chem Biol 14(1):37–49. https://doi.org/10.1021/acschembio.8b00866 [DOI: 10.1021/acschembio.8b00866]
  26. Wang Z, Zhang Y, Pinkas DM, Fox AE, Luo J, Huang H, Cui S, Xiang Q, Xu T, Xun Q, Zhu D, Tu Z, Ren X, Brekken RA, Bullock AN, Liang G, Ding K, Lu X (2018) Design, synthesis, and biological evaluation of 3-(imidazo[1,2-a] pyrazin-3-ylethynyl)-4-isopropyl-n-(3-((4-methylpiperazin-1-yl) methyl)-5-(trifluoromethyl) phenyl) benzamide as a dual inhibitor of discoidin domain receptors 1 and 2. J Med Chem 61(17):7977–7990. https://doi.org/10.1021/acs.jmedchem.8b01045 [DOI: 10.1021/acs.jmedchem.8b01045]
  27. Zhu D, Huang H, Pinkas DM, Luo J, Ganguly D, Fox AE, Arner E, Xiang Q, Tu ZC, Bullock AN, Brekken RA, Ding K, Lu X (2019) 2-Amino-2,3-dihydro-1H-indene-5-carboxamide-based discoidin domain receptor 1 (DDR1) inhibitors: design, synthesis, and in vivo antipancreatic cancer efficacy. J Med Chem 62(16):7431–7444. https://doi.org/10.1021/acs.jmedchem.9b00365 [DOI: 10.1021/acs.jmedchem.9b00365]
  28. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242 [DOI: 10.1093/nar/28.1.235]
  29. Elkamhawy A, Lu Q, Nada H, Woo J, Quan G, Lee K (2021) The journey of DDR1 and DDR2 kinase inhibitors as rising stars in the fight against cancer. Int J Mol Sci 22(12):6535. https://doi.org/10.3390/ijms22126535 [DOI: 10.3390/ijms22126535]
  30. Matada GSP, Das A, Dhiwar PS, Ghara A (2021) DDR1 and DDR2: a review on signaling pathway and small molecule inhibitors as an anticancer agent. Med Chem Res 30(3):535–551. https://doi.org/10.1007/s00044-020-02694-2 [DOI: 10.1007/s00044-020-02694-2]
  31. Mo C, Zhang Z, Li Y, Huang M, Zou J, Luo J, Tu ZC, Xu Y, Ren X, Ding K, Lu X (2020) Design and optimization of 3’-(Imidazo[1,2-a] pyrazin-3-yl)-[1,1’-biphenyl]-3-carboxamides as selective DDR1 inhibitors. ACS Med Chem Lett 11(3):379–384. https://doi.org/10.1021/acsmedchemlett.9b00495 [DOI: 10.1021/acsmedchemlett.9b00495]
  32. Jeffries DE, Borza CM, Blobaum AL, Pozzi A, Lindsley CW (2019) Discovery of VU6015929: a selective discoidin domain receptor 1/2 (DDR1/2) inhibitor to explore the role of DDR1 in antifibrotic therapy. ACS Med Chem Lett 11(1):29–33. https://doi.org/10.1021/acsmedchemlett.9b00382 [DOI: 10.1021/acsmedchemlett.9b00382]
  33. Dong R, Zhou X, Wang M, Li W, Zhang JY, Zheng X, Tang KX, Sun LP (2021) Discovery of 4-amino-1H-pyrazolo[3,4-d] pyrimidin derivatives as novel discoidin domain receptor 1 (DDR1) inhibitors. Bioorg Med Chem 29:115876. https://doi.org/10.1016/j.bmc.2020.115876 [DOI: 10.1016/j.bmc.2020.115876]
  34. Liu L, Hussain M, Luo J, Duan A, Chen C, Tu Z, Zhang J (2017) Synthesis and biological evaluation of novel dasatinib analogues as potent DDR1 and DDR2 kinase inhibitors. Chem Biol Drug Des 89(3):420–427. https://doi.org/10.1111/cbdd.12863 [DOI: 10.1111/cbdd.12863]
  35. Mysinger MM, Carchia M, Irwin JJ, Shoichet BK (2012) Directory of useful decoys, enhanced (DUD-E): better ligands and decoys for better benchmarking. J Med Chem 55(14):6582–6594. https://doi.org/10.1021/jm300687e [DOI: 10.1021/jm300687e]
  36. O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR (2011) Open Babel: an open chemical toolbox. J Cheminform 3:33. https://doi.org/10.1186/1758-2946-3-33 [DOI: 10.1186/1758-2946-3-33]
  37. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31(2):455–461. https://doi.org/10.1002/jcc.21334 [DOI: 10.1002/jcc.21334]
  38. Halgren TA, Murphy RB, Friesner RA, Beard HS, Frye LL, Pollard WT, Banks JL (2004) Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J Med Chem 47(7):1750–1759. https://doi.org/10.1021/jm030644s [DOI: 10.1021/jm030644s]
  39. Lipinski CA (2004) Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol 1(4):337–341. https://doi.org/10.1016/j.ddtec.2004.11.007 [DOI: 10.1016/j.ddtec.2004.11.007]
  40. Zhang H, Zhang L, Gao C, Yu R, Kang C (2021) Pharmacophore screening, molecular docking, ADMET prediction and MD simulations for identification of ALK and MEK potential dual inhibitors. J Mol Struct 1245. https://doi.org/10.1016/j.molstruc.2021.131066 [DOI: 10.1016/j.molstruc.2021.131066]
  41. Daina A, Michielin O, Zoete V (2017) SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 7:42717. https://doi.org/10.1038/srep42717 [DOI: 10.1038/srep42717]
  42. Pires DE, Blundell TL, Ascher DB (2015) pkCSM: predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J Med Chem 58(9):4066–4072. https://doi.org/10.1021/acs.jmedchem.5b00104 [DOI: 10.1021/acs.jmedchem.5b00104]
  43. Xiong G, Wu Z, Yi J, Fu L, Yang Z, Hsieh C, Yin M, Zeng X, Wu C, Lu A, Chen X, Hou T, Cao D (2021) ADMETlab 2.0: an integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res 49(W1):W5–W14. https://doi.org/10.1093/nar/gkab255 [DOI: 10.1093/nar/gkab255]
  44. Banerjee P, Eckert AO, Schrey AK, Preissner R (2018) ProTox-II: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Res 46(W1):W257–W263. https://doi.org/10.1093/nar/gky318 [DOI: 10.1093/nar/gky318]
  45. Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ (2005) GROMACS: fast, flexible, and free. J Comput Chem 26(16):1701–1718. https://doi.org/10.1002/jcc.20291 [DOI: 10.1002/jcc.20291]
  46. Huang J, Rauscher S, Nawrocki G, Ran T, Feig M, de Groot BL, Grubmüller H, MacKerell AD Jr (2017) CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat Methods 14(1):71–73. https://doi.org/10.1038/nmeth.4067 [DOI: 10.1038/nmeth.4067]
  47. Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR (2012) Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Cheminform 4(1):17. https://doi.org/10.1186/1758-2946-4-17 [DOI: 10.1186/1758-2946-4-17]
  48. Vanommeslaeghe K, Hatcher E, Acharya C, Kundu S, Zhong S, Shim J, Darian E, Guvench O, Lopes P, Vorobyov I, Mackerell AD Jr (2010) CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem 31(4):671–690. https://doi.org/10.1002/jcc.21367 [DOI: 10.1002/jcc.21367]
  49. Gharaghani S, Khayamian T, Ebrahimi M (2013) Molecular dynamics simulation study and molecular docking descriptors in structure-based QSAR on acetylcholinesterase (AChE) inhibitors. SAR QSAR Environ Res 24(9):773–794. https://doi.org/10.1080/1062936X.2013.792877 [DOI: 10.1080/1062936X.2013.792877]
  50. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–28. https://doi.org/10.1016/0263-7855(96)00018-5 [DOI: 10.1016/0263-7855(96)00018-5]
  51. Tran QH, Nguyen QT, Vo NQ, Mai TT, Tran TT, Tran TD et al (2022) Structure-based 3D-Pharmacophore modeling to discover novel interleukin 6 inhibitors: an in silico screening, molecular dynamics simulations and binding free energy calculations. PLoS ONE 17(4):e0266632. https://doi.org/10.1371/journal.pone.0266632 [DOI: 10.1371/journal.pone.0266632]
  52. Genheden S, Ryde U (2015) The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin Drug Discov 10(5):449–461. https://doi.org/10.1517/17460441.2015.1032936 [DOI: 10.1517/17460441.2015.1032936]
  53. Valdés-Tresanco MS, Valdés-Tresanco ME, Valiente PA, Moreno E (2021) gmx_MMPBSA: a new tool to perform end-state free energy calculations with GROMACS. J Chem Theory Comput 17(10):6281–6291. https://doi.org/10.1021/acs.jctc.1c00645 [DOI: 10.1021/acs.jctc.1c00645]
  54. Wang Y, Tang S, Lai H, Jin R, Long X, Li N, Tang Y, Guo H, Yao X, Leung EL (2020) Discovery of novel IDH1 inhibitor through comparative structure-based virtual screening. Front Pharmacol 11:579768. https://doi.org/10.3389/fphar.2020.579768 [DOI: 10.3389/fphar.2020.579768]
  55. Wang S, Jiang JH, Li RY, Deng P (2020) Docking-based virtual screening of TβR1 inhibitors: evaluation of pose prediction and scoring functions. BMC Chem 14(1):52. https://doi.org/10.1186/s13065-020-00704-3 [DOI: 10.1186/s13065-020-00704-3]
  56. Denny WA, Flanagan JU (2021) Inhibitors of discoidin domain receptor (DDR) kinases for cancer and inflammation. Biomolecules 11(11):1671. https://doi.org/10.3390/biom11111671 [DOI: 10.3390/biom11111671]
  57. Zhang Y, Zhang TJ, Tu S, Zhang ZH, Meng FH (2020) Identification of novel SRC inhibitors: pharmacophore-based virtual screening, molecular docking and molecular dynamics simulations. Molecules (Basel, Switzerland) 25(18):4094. https://doi.org/10.3390/molecules25184094 [DOI: 10.3390/molecules25184094]
  58. Li Y, Meng D, Xie J, Li R, Wang Z, Li J, Mou L, Deng X, Deng P (2022) Design of rational JAK3 inhibitors based on the parent core structure of 1,7-dihydro-dipyrrolo [2,3-b:3’,2’-e] pyridine. Int J Mol Sci 23(10):5437. https://doi.org/10.3390/ijms23105437 [DOI: 10.3390/ijms23105437]
  59. Gao M, Duan L, Luo J, Zhang L, Lu X, Zhang Y, Zhang Z, Tu Z, Xu Y, Ren X, Ding K (2013) Discovery and optimization of 3-(2-(Pyrazolo[1,5-a] pyrimidin-6-yl) ethynyl) benzamides as novel selective and orally bioavailable discoidin domain receptor 1 (DDR1) inhibitors. J Med Chem 56(8):3281–3295. https://doi.org/10.1021/jm301824k [DOI: 10.1021/jm301824k]

Grants

  1. cstc2019jcyj-msxmX0034/the Fundamental and Advanced Research Projects of Chongqing City

MeSH Term

Discoidin Domain Receptor 1
Receptor Protein-Tyrosine Kinases
Discoidin Domain Receptors
Receptors, Mitogen
Molecular Docking Simulation

Chemicals

Discoidin Domain Receptor 1
Receptor Protein-Tyrosine Kinases
Discoidin Domain Receptors
Receptors, Mitogen

Word Cloud

Created with Highcharts 10.0.0DDR1inhibitors1screeningdomainreceptortargetcrystalmolecularpotentialcomplexsystemsdynamicsbindingDiscoidinpromisingpulmonaryfibrosisIPFspecificitydockingassessmentstructuresidentifiedusingmodelvirtualfivehitsimulationsMM/PBSAstabilityCpd17ECNumber2710recentlyconsideredtherapeuticidiopathicHowevernonecurrentlydiscoveredincludedclinicalstudiesduelowdruggabilitylimitationsnecessitatingvariousapproachesdevelopnovelstudyassureundertakenfindwell-differentiatedstructure4CKRamongmanybestpharmacophoreChEMBLdatabasedonemoleculesSubsequentlycompoundvalidatedmethodsassesssystemligandBasedhydrogen-bondingoccupancyanalysisDDR1-Cpd2DDR1-Cpd17DDR1-Cpd18exhibitedsuperiorcomparedDDR1-Cpd1DDR-Cpd33Meanwhiletargetingdescending ordermolecules'freeenergies- 145820 kJ/mol > Cpd2- 131818 kJ/mol > Cpd18- 130692 kJ/mol > Cpd33- 129175 kJ/mol > Cpd1- 126103 kJ/molAmongCpd2Cpd18showedimprovedcharacteristicsindicatingmayresearchdevelopedhigh-hitrateeffectivemethodservestheoreticalguidefindingdevelopmenttherapeuticsVirtualdiscoidinbasedstructuralinhibitorIdiopathiccalculationsMolecularPharmacophoreStructure-based

Similar Articles

Cited By