Development and psychometric evaluation of a new brief scale to measure eHealth literacy in people with type 2 diabetes.

Eun-Hyun Lee, Young Whee Lee, Kwan-Woo Lee, Hae Jin Kim, Seongbin Hong, So Hun Kim, Eun Hee Kang
Author Information
  1. Eun-Hyun Lee: Graduate School of Public Health, Ajou University, 164 Worldcup-ro, Yeongtong-gu, 16499, Suwon, Gyeonggi-do, Republic of Korea. ehlee@ajou.ac.kr.
  2. Young Whee Lee: Department of Nursing, Inha University, Incheon, Republic of Korea.
  3. Kwan-Woo Lee: Department of Endocrinology and Metabolism, School of Medicine, Ajou University, Suwon, Republic of Korea.
  4. Hae Jin Kim: Department of Endocrinology and Metabolism, School of Medicine, Ajou University, Suwon, Republic of Korea.
  5. Seongbin Hong: Department of Internal Medicine, School of Medicine, Inha University, Incheon, Republic of Korea.
  6. So Hun Kim: Department of Internal Medicine, School of Medicine, Inha University, Incheon, Republic of Korea.
  7. Eun Hee Kang: Graduate School of Public Health, Ajou University, 164 Worldcup-ro, Yeongtong-gu, 16499, Suwon, Gyeonggi-do, Republic of Korea.

Abstract

BACKGROUND: The internet has become a major source of health information, and obtaining appropriate information requires various abilities and skills, labeled as electronic health literacy (eHealth literacy). The existing instruments for measuring eHealth literacy are outdated because they were developed during the Web 1.0 era, or not sufficiently sensitive for people with a specific condition or disease because they were designed to assess eHealth literacy over a broad range for a general population. Approximately one in ten adults worldwide live with diabetes. Health professionals have a responsibility to identify patients with low eHealth literacy to prevent them from obtaining misleading internet diabetes information.
AIMS: The aims were to develop a condition-specific eHealth literacy scale for diabetes and to evaluate its psychometric properties among people with type 2 diabetes.
METHODS: An instrument development design was used. This study recruited 453 people diagnosed with type 2 diabetes at the outpatient clinics of hospitals in 2021. Psychometric properties (internal consistency, measurement invariance, and content, structural, convergent, and known-groups validities) were analyzed.
RESULTS: An expert panel assessed content validity. Exploratory factor analysis, exploratory graph analysis, and confirmatory factor analysis (CFA) for structural validity yielded a two-factor solution (CFI = 0.977, SRMR = 0.029, RMSEA = 0.077). Cronbach's alpha and omega values were excellent for each factor (0.87-0.94). Multigroup CFA yielded configural and metric measurement invariance across the gender, age, and glycemic control status groups. Convergent validity with a comparator instrument to measure health literacy was supported by a moderate correlation, and known-groups validity determined using groups with different internet-use frequencies was satisfied with a high effect size.
CONCLUSION: A new condition-specific eHealth literacy scale for people with type 2 diabetes was developed, comprising 10 items. The scale exhibited good psychometric properties; however, test-retest reliability must be determined for the stability of the scale and cross-cultural validity is required among different languages. The brief scale has the merits of being feasible to use in busy clinical practice and being less burdensome to respondents. The scale can be applied in clinical trials of internet-based diabetes interventions for assessing the eHealth literacy of respondents.

Keywords

References

  1. JMIR Mhealth Uhealth. 2020 Feb 24;8(2):e16316 [PMID: 32130168]
  2. J Med Internet Res. 2018 Oct 31;20(10):e281 [PMID: 30381283]
  3. JMIR Hum Factors. 2015 May 20;2(1):e9 [PMID: 27025228]
  4. Inform Health Soc Care. 2018 Dec;43(4):427-442 [PMID: 29045164]
  5. J Med Internet Res. 2019 Mar 27;21(3):e10831 [PMID: 30916666]
  6. Int J Nurs Stud. 2018 Dec;88:1-8 [PMID: 30142483]
  7. Health Soc Care Community. 2022 May;30(3):1109-1119 [PMID: 33956368]
  8. J Health Commun. 2019;24(10):737-748 [PMID: 31583963]
  9. JMIR Mhealth Uhealth. 2021 Feb 5;9(2):e18404 [PMID: 33544088]
  10. J Med Internet Res. 2006 Nov 14;8(4):e27 [PMID: 17213046]
  11. Int J Med Educ. 2011 Jun 27;2:53-55 [PMID: 28029643]
  12. J Nurs Educ. 2021 Aug;60(8):429-430 [PMID: 34346817]
  13. Qual Life Res. 1995 Aug;4(4):293-307 [PMID: 7550178]
  14. J Med Internet Res. 2019 Nov 28;21(11):e12504 [PMID: 31778120]
  15. Comput Inform Nurs. 2015 Apr;33(4):150-6 [PMID: 25783223]
  16. J Clin Epidemiol. 2010 Jul;63(7):737-45 [PMID: 20494804]
  17. Soc Sci Med. 2022 Jan;292:114523 [PMID: 34785096]
  18. J Med Internet Res. 2021 Jun 3;23(6):e23473 [PMID: 34081023]
  19. J Med Internet Res. 2021 Nov 15;23(11):e30644 [PMID: 34779781]
  20. J Med Internet Res. 2018 Feb 12;20(2):e36 [PMID: 29434011]
  21. Int J Environ Res Public Health. 2018 May 09;15(5): [PMID: 29747423]
  22. Aust J Prim Health. 2019 Apr;25(2):176-184 [PMID: 30890241]
  23. J Med Internet Res. 2016 Jul 11;18(7):e161 [PMID: 27400726]
  24. Int J Environ Res Public Health. 2019 Sep 03;16(17): [PMID: 31484338]
  25. J Med Internet Res. 2017 Oct 04;19(10):e331 [PMID: 28978496]
  26. Res Nurs Health. 2007 Aug;30(4):459-67 [PMID: 17654487]
  27. Int J Environ Res Public Health. 2018 Jul 23;15(7): [PMID: 30041420]
  28. J Med Internet Res. 2020 Jul 28;22(7):e17312 [PMID: 32720900]
  29. Psychol Methods. 2020 Jun;25(3):292-320 [PMID: 32191105]
  30. JMIR Form Res. 2020 Sep 8;4(9):e14450 [PMID: 32897230]
  31. Mult Scler Relat Disord. 2018 Oct;25:156-162 [PMID: 30081315]
  32. Diabet Med. 2017 Jan;34(1):14-26 [PMID: 26996982]
  33. Diabetes Metab Syndr Obes. 2016 Nov 04;9:381-390 [PMID: 27853384]
  34. J Med Internet Res. 2018 May 10;20(5):e178 [PMID: 29748163]
  35. J Med Internet Res. 2018 Jan 29;20(2):e40 [PMID: 29463488]
  36. J Med Internet Res. 2011 Nov 09;13(4):e86 [PMID: 22071338]
  37. J Med Internet Res. 2011 Dec 23;13(4):e125 [PMID: 22193243]
  38. J Med Internet Res. 2019 Mar 05;21(3):e11240 [PMID: 30835242]
  39. J Med Internet Res. 2018 Apr 20;20(4):e138 [PMID: 29678800]
  40. J Med Internet Res. 2018 May 07;20(5):e172 [PMID: 29735475]
  41. Stud Health Technol Inform. 2014;205:843-7 [PMID: 25160306]
  42. J Med Internet Res. 2017 Jan 24;19(1):e27 [PMID: 28119275]
  43. Health Informatics J. 2021 Jan-Mar;27(1):1460458220975466 [PMID: 33446030]
  44. J Multidiscip Healthc. 2020 Mar 09;13:241-247 [PMID: 32210568]
  45. Syst Rev. 2017 Oct 24;6(1):211 [PMID: 29065911]
  46. Qual Life Res. 2018 May;27(5):1171-1179 [PMID: 29260445]
  47. J Med Internet Res. 2013 Feb 11;15(2):e27 [PMID: 23399720]

Grants

  1. 2021R1A2B5B01001603/National Research Foundation of Korea

Word Cloud

Created with Highcharts 10.0.0literacyeHealthdiabetesscalepeoplevalidityhealthtype2informationpsychometricpropertiesfactoranalysisinternetobtainingdeveloped0condition-specificamonginstrumentmeasurementinvariancecontentstructuralknown-groupsCFAyieldedgroupsmeasuredetermineddifferentnewbriefclinicalrespondentsBACKGROUND:becomemajorsourceappropriaterequiresvariousabilitiesskillslabeledelectronicexistinginstrumentsmeasuringoutdatedWeb1erasufficientlysensitivespecificconditiondiseasedesignedassessbroadrangegeneralpopulationApproximatelyonetenadultsworldwideliveHealthprofessionalsresponsibilityidentifypatientslowpreventmisleadingAIMS:aimsdevelopevaluateMETHODS:developmentdesignusedstudyrecruited453diagnosedoutpatientclinicshospitals2021PsychometricinternalconsistencyconvergentvaliditiesanalyzedRESULTS:expertpanelassessedExploratoryexploratorygraphconfirmatorytwo-factorsolutionCFI = 0977SRMR = 0029RMSEA = 0077Cronbach'salphaomegavaluesexcellent87-094MultigroupconfiguralmetricacrossgenderageglycemiccontrolstatusConvergentcomparatorsupportedmoderatecorrelationusinginternet-usefrequenciessatisfiedhigheffectsizeCONCLUSION:comprising10itemsexhibitedgoodhowevertest-retestreliabilitymuststabilitycross-culturalrequiredlanguagesmeritsfeasibleusebusypracticelessburdensomecanappliedtrialsinternet-basedinterventionsassessingDevelopmentevaluationDiabetesElectronicInstrumentPsychometricsScale

Similar Articles

Cited By