Optical photothermal infrared spectroscopy with simultaneously acquired Raman spectroscopy for two-dimensional microplastic identification.

Julia Sophie Böke, Jürgen Popp, Christoph Krafft
Author Information
  1. Julia Sophie Böke: Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745, Jena, Germany.
  2. Jürgen Popp: Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745, Jena, Germany.
  3. Christoph Krafft: Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745, Jena, Germany. christoph.krafft@leibniz-ipht.de.

Abstract

In recent years, vibrational spectroscopic techniques based on Fourier transform infrared (FTIR) or Raman microspectroscopy have been suggested to fulfill the unmet need for microplastic particle detection and identification. Inter-system comparison of spectra from reference polymers enables assessing the reproducibility between instruments and advantages of emerging quantum cascade laser-based optical photothermal infrared (O-PTIR) spectroscopy. In our work, IR and Raman spectra of nine plastics, namely polyethylene, polypropylene, polyvinyl chloride, polyethylene terephthalate, polycarbonate, polystyrene, silicone, polylactide acid and polymethylmethacrylate were simultaneously acquired using an O-PTIR microscope in non-contact, reflection mode. Comprehensive band assignments were presented. We determined the agreement of O-PTIR with standalone attenuated total reflection FTIR and Raman spectrometers based on the hit quality index (HQI) and introduced a two-dimensional identification (2D-HQI) approach using both Raman- and IR-HQIs. Finally, microplastic particles were prepared as test samples from known materials by wet grinding, O-PTIR data were collected and subjected to the 2D-HQI identification approach. We concluded that this framework offers improved material identification of microplastic particles in environmental, nutritious and biological matrices.

References

  1. Appl Spectrosc. 2020 Sep;74(9):1049-1065 [PMID: 32893667]
  2. Anal Chem. 2018 Feb 6;90(3):2023-2030 [PMID: 29286634]
  3. Anal Chem. 2020 Feb 4;92(3):2443-2451 [PMID: 31939281]
  4. Micros Today. 2020 May;28(3):26-36 [PMID: 33850481]
  5. Nat Methods. 2020 Mar;17(3):261-272 [PMID: 32015543]
  6. Environ Sci Technol. 2019 Feb 5;53(3):1039-1047 [PMID: 30608663]
  7. Chem Sci. 2022 Jun 29;13(27):8171-8179 [PMID: 35919437]
  8. Water Res. 2018 Oct 1;142:1-9 [PMID: 29804032]
  9. Environ Sci Technol. 2020 Dec 15;54(24):15893-15903 [PMID: 33233891]
  10. Environ Pollut. 2017 Dec;231(Pt 2):1256-1264 [PMID: 28941715]
  11. J Biomed Mater Res. 1984 May-Jun;18(5):537-45 [PMID: 6736082]
  12. Anal Bioanal Chem. 2015 Sep;407(22):6791-801 [PMID: 26123441]
  13. Sci Total Environ. 2020 May 1;715:136826 [PMID: 32023521]
  14. Anal Bioanal Chem. 2020 Jan;412(3):555-560 [PMID: 31848670]
  15. Analyst. 2015 Jan 7;140(1):250-7 [PMID: 25382860]
  16. Anal Bioanal Chem. 2018 Aug;410(21):5131-5141 [PMID: 29978249]
  17. Anal Bioanal Chem. 2022 May;414(11):3359-3372 [PMID: 35166866]
  18. Anal Chem. 2015 Jun 16;87(12):6032-40 [PMID: 25986938]
  19. Anal Bioanal Chem. 2016 Nov;408(29):8377-8391 [PMID: 27722940]
  20. Mar Pollut Bull. 2015 Nov 15;100(1):70-81 [PMID: 26454631]
  21. Environ Res. 2022 Sep;212(Pt D):113569 [PMID: 35636466]
  22. Environ Sci Technol. 2018 Nov 20;52(22):13279-13288 [PMID: 30350953]
  23. Water Res. 2016 Jul 1;98:64-74 [PMID: 27082693]
  24. Anal Chem. 2011 Jun 1;83(11):4061-7 [PMID: 21548558]
  25. Appl Spectrosc. 2020 Sep;74(9):1012-1047 [PMID: 32249594]
  26. Appl Spectrosc. 2020 Sep;74(9):1099-1125 [PMID: 32643389]
  27. Appl Spectrosc. 2017 Aug;71(8):1868-1875 [PMID: 28345386]

Grants

  1. 860775/H2020 Marie Skłodowska-Curie Actions

MeSH Term

Microplastics
Plastics
Spectrum Analysis, Raman
Reproducibility of Results
Polypropylenes
Spectroscopy, Fourier Transform Infrared
Environmental Monitoring
Water Pollutants, Chemical

Chemicals

Microplastics
Plastics
Polypropylenes
Water Pollutants, Chemical

Word Cloud

Created with Highcharts 10.0.0identificationRamanmicroplasticO-PTIRinfraredspectroscopybasedFTIRspectraphotothermalpolyethylenesimultaneouslyacquiredusingreflectiontwo-dimensional2D-HQIapproachparticlesrecentyearsvibrationalspectroscopictechniquesFouriertransformmicrospectroscopysuggestedfulfillunmetneedparticledetectionInter-systemcomparisonreferencepolymersenablesassessingreproducibilityinstrumentsadvantagesemergingquantumcascadelaser-basedopticalworkIRnineplasticsnamelypolypropylenepolyvinylchlorideterephthalatepolycarbonatepolystyrenesiliconepolylactideacidpolymethylmethacrylatemicroscopenon-contactmodeComprehensivebandassignmentspresenteddeterminedagreementstandaloneattenuatedtotalspectrometershitqualityindexHQIintroducedRaman-IR-HQIsFinallypreparedtestsamplesknownmaterialswetgrindingdatacollectedsubjectedconcludedframeworkoffersimprovedmaterialenvironmentalnutritiousbiologicalmatricesOptical

Similar Articles

Cited By