Selective attention sharpens population receptive fields in human auditory cortex.

Agustin Lage-Castellanos, Federico De Martino, Geoffrey M Ghose, Omer Faruk Gulban, Michelle Moerel
Author Information
  1. Agustin Lage-Castellanos: Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6200 MD, Maastricht, The Netherlands.
  2. Federico De Martino: Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6200 MD, Maastricht, The Netherlands.
  3. Geoffrey M Ghose: Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN 55455, United States. ORCID
  4. Omer Faruk Gulban: Brain Innovation B.V, 6229 EV, Maastricht, The Netherlands.
  5. Michelle Moerel: Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6200 MD, Maastricht, The Netherlands. ORCID

Abstract

Selective attention enables the preferential processing of relevant stimulus aspects. Invasive animal studies have shown that attending a sound feature rapidly modifies neuronal tuning throughout the auditory cortex. Human neuroimaging studies have reported enhanced auditory cortical responses with selective attention. To date, it remains unclear how the results obtained with functional magnetic resonance imaging (fMRI) in humans relate to the electrophysiological findings in animal models. Here we aim to narrow the gap between animal and human research by combining a selective attention task similar in design to those used in animal electrophysiology with high spatial resolution ultra-high field fMRI at 7 Tesla. Specifically, human participants perform a detection task, whereas the probability of target occurrence varies with sound frequency. Contrary to previous fMRI studies, we show that selective attention resulted in population receptive field sharpening, and consequently reduced responses, at the attended sound frequencies. The difference between our results to those of previous fMRI studies supports the notion that the influence of selective attention on auditory cortex is diverse and may depend on context, stimulus, and task.

Keywords

References

  1. Hum Brain Mapp. 2008 Feb;29(2):142-56 [PMID: 17394212]
  2. Sci Rep. 2015 Nov 24;5:17048 [PMID: 26597173]
  3. J Neurosci. 2019 Jul 10;39(28):5506-5516 [PMID: 31068438]
  4. Proc Natl Acad Sci U S A. 2012 Feb 7;109(6):2144-9 [PMID: 22308415]
  5. J Neurophysiol. 2009 Sep;102(3):1606-22 [PMID: 19571201]
  6. J Neurophysiol. 2003 Mar;89(3):1603-22 [PMID: 12626629]
  7. Nat Neurosci. 2004 Jan;7(1):70-4 [PMID: 14647291]
  8. Trends Neurosci. 2006 Jun;29(6):317-22 [PMID: 16697058]
  9. J Neurosci. 2004 Feb 25;24(8):1822-32 [PMID: 14985422]
  10. J Neurosci. 2012 Oct 10;32(41):14205-16 [PMID: 23055490]
  11. Nat Neurosci. 2011 Jan;14(1):108-14 [PMID: 21151120]
  12. Front Neurosci. 2014 Jul 21;8:204 [PMID: 25100935]
  13. Nat Commun. 2014 Dec 12;5:5643 [PMID: 25501983]
  14. J Neurosci. 2014 Dec 3;34(49):16496-508 [PMID: 25471586]
  15. Neuron. 2013 Feb 20;77(4):750-61 [PMID: 23439126]
  16. J Neurophysiol. 2001 Apr;85(4):1732-49 [PMID: 11287495]
  17. J Neurophysiol. 2004 Jul;92(1):444-57 [PMID: 15014102]
  18. Hear Res. 2009 Nov;257(1-2):106-18 [PMID: 19706320]
  19. Magn Reson Med. 2010 May;63(5):1144-53 [PMID: 20432285]
  20. Front Neurosci. 2020 Jul 30;14:825 [PMID: 32848580]
  21. Neuron. 2014 Apr 16;82(2):486-99 [PMID: 24742467]
  22. Curr Opin Neurobiol. 2007 Aug;17(4):437-55 [PMID: 17714933]
  23. J Neurosci. 2013 Jan 30;33(5):1858-63 [PMID: 23365225]
  24. J Neurosci. 2013 Jul 17;33(29):11888-98 [PMID: 23864678]
  25. Neuroimage. 2008 Jan 15;39(2):647-60 [PMID: 17977024]
  26. J Neurosci. 2005 Aug 17;25(33):7623-35 [PMID: 16107649]
  27. Neuroimage. 2009 Jun;46(2):432-46 [PMID: 19233292]
  28. Magn Reson Med. 2012 May;67(5):1210-24 [PMID: 21858868]
  29. Curr Biol. 2004 May 4;14(9):744-51 [PMID: 15120065]
  30. Proc Natl Acad Sci U S A. 2011 Mar 8;108(10):4182-7 [PMID: 21368107]
  31. J Neurosci. 2011 Oct 5;31(40):14067-75 [PMID: 21976491]
  32. Neuroimage. 2010 Apr 15;50(3):1202-11 [PMID: 20096790]
  33. Commun Biol. 2022 Nov 14;5(1):1244 [PMID: 36376370]
  34. J Neurosci. 2009 Sep 9;29(36):11192-202 [PMID: 19741126]
  35. Hum Brain Mapp. 2006 May;27(5):392-401 [PMID: 16596654]
  36. Proc Natl Acad Sci U S A. 2015 Dec 29;112(52):16036-41 [PMID: 26668397]
  37. J Neurophysiol. 2004 Jun;91(6):2578-89 [PMID: 15136602]
  38. Sci Rep. 2019 Apr 2;9(1):5502 [PMID: 30940888]
  39. Neuron. 2009 Feb 12;61(3):467-80 [PMID: 19217382]
  40. Neuron. 1998 Dec;21(6):1409-22 [PMID: 9883733]
  41. J Neurosci. 2018 Sep 5;38(36):7822-7832 [PMID: 30185539]
  42. Nat Neurosci. 2003 Nov;6(11):1216-23 [PMID: 14583754]
  43. Cereb Cortex. 2017 May 1;27(5):3002-3014 [PMID: 27230215]
  44. Front Hum Neurosci. 2014 Jul 14;8:519 [PMID: 25071535]
  45. Proc Natl Acad Sci U S A. 2017 May 02;114(18):4799-4804 [PMID: 28420788]
  46. Neuroimage. 2015 Jan 15;105:428-39 [PMID: 25449742]
  47. Cereb Cortex. 2012 Sep;22(9):2024-38 [PMID: 21980020]
  48. J Neurophysiol. 2005 Jan;93(1):22-34 [PMID: 15342713]
  49. J Neurosci. 2017 Dec 13;37(50):12187-12201 [PMID: 29109238]
  50. Elife. 2019 Aug 01;8: [PMID: 31368891]
  51. PLoS One. 2011 Mar 23;6(3):e17832 [PMID: 21448274]
  52. PLoS Comput Biol. 2014 Jan;10(1):e1003412 [PMID: 24391486]
  53. Magn Reson Med. 2012 May;67(5):1285-93 [PMID: 21826732]
  54. Neuroimage. 2018 Jul 1;174:274-287 [PMID: 29571712]
  55. Neuroimage. 2000 Apr;11(4):271-88 [PMID: 10725184]
  56. Front Neurosci. 2013 Dec 17;7:247 [PMID: 24381539]
  57. Neuroimage. 2014 Jan 1;84:534-45 [PMID: 24018302]
  58. Curr Biol. 2015 Mar 2;25(5):595-600 [PMID: 25702580]
  59. Nat Neurosci. 2002 Jul;5(7):631-2 [PMID: 12068304]
  60. Vision Res. 2011 Jul 1;51(13):1484-525 [PMID: 21549742]

MeSH Term

Animals
Humans
Auditory Cortex
Acoustic Stimulation
Sound Localization
Sound
Magnetic Resonance Imaging
Attention
Auditory Perception

Word Cloud

Created with Highcharts 10.0.0attentionauditoryselectivefMRIanimalstudiescortexhumansoundtaskfieldSelectivestimulustuningresponsesresultsultra-highfrequencypreviouspopulationreceptiveenablespreferentialprocessingrelevantaspectsInvasiveshownattendingfeaturerapidlymodifiesneuronalthroughoutHumanneuroimagingreportedenhancedcorticaldateremainsunclearobtainedfunctionalmagneticresonanceimaginghumansrelateelectrophysiologicalfindingsmodelsaimnarrowgapresearchcombiningsimilardesignusedelectrophysiologyhighspatialresolution7 TeslaSpecificallyparticipantsperformdetectionwhereasprobabilitytargetoccurrencevariesContraryshowresultedsharpeningconsequentlyreducedattendedfrequenciesdifferencesupportsnotioninfluencediversemaydependcontextsharpensfieldspRFmodeling

Similar Articles

Cited By