Arsenic Analysis in the Petroleum Industry: A Review.

Aurore Mere, Maxime Enrico, Honggang Zhou, Emmanuel Tessier, Brice Bouyssiere
Author Information
  1. Aurore Mere: Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM UMR 5254, Technopôle Hélioparc, 2 Avenue du Président Angot, 64053 Pau Cedex 09, France.
  2. Maxime Enrico: Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM UMR 5254, Technopôle Hélioparc, 2 Avenue du Président Angot, 64053 Pau Cedex 09, France. ORCID
  3. Honggang Zhou: TotalEnergies, CSTJF, Av. Larribau, 64018 Pau, France.
  4. Emmanuel Tessier: Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM UMR 5254, Technopôle Hélioparc, 2 Avenue du Président Angot, 64053 Pau Cedex 09, France.
  5. Brice Bouyssiere: Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM UMR 5254, Technopôle Hélioparc, 2 Avenue du Président Angot, 64053 Pau Cedex 09, France. ORCID

Abstract

The presence of arsenic in natural gas and liquid hydrocarbons is of great concern for oil companies. In addition to health risks due to its toxicity as well as environmental issues, arsenic is responsible for irreversible poisoning of catalysts and clogging of pipes via the accumulation of as-containing precipitates. To address these problems and to better design treatment units, robust methods for the analysis of arsenic and its compounds in oil streams are required. In addition, the use of feedstocks as a novel source of energy is becoming increasingly important. Most biomasses used as feedstocks are contaminated with arsenic. To avoid problems related to the presence of this element, it is therefore also necessary to have reliable methods for the analysis of arsenic and its compounds in these new fluids. This review outlines the sampling techniques, sample preparation methods, and arsenic analysis techniques developed during recent decades and commonly used in the oil industry and in the new feedstock energy domain.

References

  1. Cancer. 1968 Feb;21(2):312-39 [PMID: 4952508]
  2. Environ Sci Technol. 2009 Nov 1;43(21):8270-5 [PMID: 19924955]
  3. Bioresour Technol. 2019 Apr;278:214-222 [PMID: 30703639]
  4. Environ Geochem Health. 1989 Dec;11(3-4):95-9 [PMID: 24202418]
  5. Bioresour Technol. 2020 Oct;313:123641 [PMID: 32535522]
  6. Bioresour Technol. 2011 Jan;102(2):1928-32 [PMID: 20801648]
  7. Anal Chem. 2000 Sep 1;72(17):4205-11 [PMID: 10994985]
  8. Anal Chem. 1985 Nov;57(13):2481-6 [PMID: 4073512]
  9. Environ Geochem Health. 2009 Apr;31 Suppl 1:189-200 [PMID: 19190988]
  10. Anal Bioanal Chem. 2004 May;379(1):66-71 [PMID: 14985916]
  11. Environ Sci Technol. 2007 Jul 1;41(13):4536-41 [PMID: 17695893]
  12. Environ Pollut. 2000 Mar;107(3):451-64 [PMID: 15092991]
  13. Sci Total Environ. 2014 May 15;481:533-41 [PMID: 24631616]
  14. Anal Chem. 2017 Jun 6;89(11):5719-5724 [PMID: 28441010]
  15. Indian J Med Res. 2008 Oct;128(4):436-47 [PMID: 19106439]
  16. J Hazard Mater. 2012 Aug 15;227-228:445-52 [PMID: 22698682]
  17. Talanta. 2005 Jul 15;67(1):195-204 [PMID: 18970155]
  18. Sci Total Environ. 2020 Aug 10;729:138702 [PMID: 32498155]
  19. J Environ Monit. 2009 Dec;11(12):2222-30 [PMID: 20024020]

Word Cloud

Created with Highcharts 10.0.0arsenicoilmethodsanalysispresenceadditionproblemscompoundsfeedstocksenergyusednewtechniquesnaturalgasliquidhydrocarbonsgreatconcerncompanieshealthrisksduetoxicitywellenvironmentalissuesresponsibleirreversiblepoisoningcatalystscloggingpipesviaaccumulationAs-containingprecipitatesaddressbetterdesigntreatmentunitsrobuststreamsrequiredusenovelsourcebecomingincreasinglyimportantbiomassescontaminatedavoidrelatedelementthereforealsonecessaryreliablefluidsreviewoutlinessamplingsamplepreparationdevelopedrecentdecadescommonlyindustryfeedstockdomainArsenicAnalysisPetroleumIndustry:Review

Similar Articles

Cited By (2)