Anisotropic mechanical properties in the healthy human brain estimated with multi-excitation transversely isotropic MR elastography.

Daniel R Smith, Diego A Caban-Rivera, Matthew D J McGarry, L Tyler Williams, Grace McIlvain, Ruth J Okamoto, Elijah E W Van Houten, Philip V Bayly, Keith D Paulsen, Curtis L Johnson
Author Information
  1. Daniel R Smith: Department of Biomedical Engineering, University of Delaware, Newark DE 19711.
  2. Diego A Caban-Rivera: Department of Biomedical Engineering, University of Delaware, Newark DE 19711.
  3. Matthew D J McGarry: Thayer School of Engineering, Dartmouth College, Hanover NH 03755.
  4. L Tyler Williams: Department of Biomedical Engineering, University of Delaware, Newark DE 19711.
  5. Grace McIlvain: Department of Biomedical Engineering, University of Delaware, Newark DE 19711.
  6. Ruth J Okamoto: Department of Mechanical Engineering & Materials Science, Washington University in St. Louis, St. Louis MO 63130.
  7. Elijah E W Van Houten: Département de génie mécanique, Université de Sherbrooke, Sherbrooke, QC, Canada J1K 2R1.
  8. Philip V Bayly: Department of Mechanical Engineering & Materials Science, Washington University in St. Louis, St. Louis MO 63130.
  9. Keith D Paulsen: Thayer School of Engineering, Dartmouth College, Hanover NH 03755.
  10. Curtis L Johnson: Department of Biomedical Engineering, University of Delaware, Newark DE 19711.

Abstract

Magnetic resonance elastography (MRE) is an MRI technique for imaging the mechanical properties of brain in vivo, and has shown differences in properties between neuroanatomical regions and sensitivity to aging, neurological disorders, and normal brain function. Past MRE studies investigating these properties have typically assumed the brain is mechanically isotropic, though the aligned fibers of white matter suggest an anisotropic material model should be considered for more accurate parameter estimation. Here we used a transversely isotropic, nonlinear inversion algorithm (TI-NLI) and multiexcitation MRE to estimate the anisotropic material parameters of individual white matter tracts in healthy young adults. We found significant differences between individual tracts for three recovered anisotropic parameters: substrate shear stiffness, (range: 2.57 - 3.02 kPa), shear anisotropy, (range: -0.026 - 0.164), and tensile anisotropy, (range: 0.559 - 1.049). Additionally, we demonstrated the repeatability of these parameter estimates in terms of lower variability of repeated measures in a single subject relative to variability in our sample population. Further, we observed significant differences in anisotropic mechanical properties between segments of the corpus callosum (genu, body, and splenium), which is expected based on differences in axonal microstructure. This study shows the ability of MRE with TI-NLI to estimate anisotropic mechanical properties of white matter and presents reference properties for tracts throughout the healthy brain.

Keywords

References

  1. Neuroimage. 2008 Apr 1;40(2):570-582 [PMID: 18255316]
  2. Neuroimage Clin. 2020;27:102313 [PMID: 32585569]
  3. Magn Reson Med. 2017 Dec;78(6):2360-2372 [PMID: 28097687]
  4. Magn Reson Med. 2005 Feb;53(2):372-87 [PMID: 15678538]
  5. Neuroimage. 2012 Aug 15;62(2):782-90 [PMID: 21979382]
  6. J Magn Reson Imaging. 2013 Jan;37(1):217-26 [PMID: 22987805]
  7. Int J Numer Method Biomed Eng. 2018 Jun;34(6):e2979 [PMID: 29528568]
  8. Acta Biomater. 2017 Jan 15;48:319-340 [PMID: 27989920]
  9. J Biomech Eng. 2020 Jul 1;142(7): [PMID: 32006012]
  10. J Mech Behav Biomed Mater. 2016 Jun;59:538-546 [PMID: 27032311]
  11. Magn Reson Med. 2012 Nov;68(5):1410-22 [PMID: 22252792]
  12. Brain Res. 1992 Dec 11;598(1-2):154-61 [PMID: 1486478]
  13. Neuroimage. 2016 May 15;132:534-541 [PMID: 26931816]
  14. Neuroradiology. 2017 Jan;59(1):61-67 [PMID: 27889837]
  15. Neuroimage Clin. 2013 Sep 20;3:381-7 [PMID: 24273721]
  16. Front Neurosci. 2018 Jul 11;12:467 [PMID: 30050403]
  17. Braz J Med Biol Res. 2003 Apr;36(4):409-20 [PMID: 12700818]
  18. Front Neuroanat. 2009 Sep 04;3:14 [PMID: 19753325]
  19. Neuroimage. 2015 May 1;111:59-64 [PMID: 25698157]
  20. Hum Brain Mapp. 2016 Dec;37(12):4221-4233 [PMID: 27401228]
  21. PLoS One. 2011;6(9):e23451 [PMID: 21931599]
  22. J Mech Behav Biomed Mater. 2013 Jul;23:117-32 [PMID: 23680651]
  23. J Biomech. 2017 May 24;57:146-151 [PMID: 28433390]
  24. Neuroimage Clin. 2017 Dec 20;18:485-493 [PMID: 29527504]
  25. Neurobiol Aging. 2018 May;65:158-167 [PMID: 29494862]
  26. PLoS One. 2013 Dec 02;8(12):e81668 [PMID: 24312570]
  27. Biomech Model Mechanobiol. 2006 Mar;5(1):53-61 [PMID: 16315049]
  28. Phys Med Biol. 2021 Feb 26;66(5): [PMID: 32512548]
  29. J Magn Reson Imaging. 2011 Sep;34(3):494-8 [PMID: 21751286]
  30. Neuroreport. 1996 Jul 29;7(11):1761-4 [PMID: 8905659]
  31. Magn Reson Imaging. 2012 May;30(4):535-9 [PMID: 22326238]
  32. J Biomech. 2013 Nov 15;46(16):2761-8 [PMID: 24094454]
  33. Cereb Cortex. 2021 May 10;31(6):2799-2811 [PMID: 33454745]
  34. Clin Anat. 2010 Jul;23(5):497-511 [PMID: 20544947]
  35. Neuroimage. 2017 May 15;152:108-118 [PMID: 28254453]
  36. J Mech Behav Biomed Mater. 2018 Mar;79:30-37 [PMID: 29253729]
  37. J Magn Reson. 2018 Jun;291:73-83 [PMID: 29705042]
  38. Neuroimage. 2013 Oct 1;79:145-52 [PMID: 23644001]
  39. Med Image Anal. 2022 May;78:102432 [PMID: 35358836]
  40. Neuroimage. 2003 Oct;20(2):870-88 [PMID: 14568458]
  41. Med Phys. 2012 Oct;39(10):6388-96 [PMID: 23039674]
  42. Cereb Cortex. 2021 Jan 5;31(2):1032-1045 [PMID: 32995843]
  43. J Neurol Neurosurg Psychiatry. 2012 Sep;83(9):870-6 [PMID: 22797288]
  44. Neuroimage. 2004;23 Suppl 1:S208-19 [PMID: 15501092]
  45. J Biomech. 2015 Nov 26;48(15):4002-4009 [PMID: 26476762]
  46. Magn Reson Med. 2009 Jun;61(6):1336-49 [PMID: 19319973]
  47. Neuroimage Clin. 2015 Dec 19;10:283-90 [PMID: 26900568]
  48. Neuroimage. 2021 May 15;232:117889 [PMID: 33617995]
  49. NMR Biomed. 2013 Nov;26(11):1387-94 [PMID: 23640745]
  50. Brain Imaging Behav. 2020 Feb;14(1):175-185 [PMID: 30382528]
  51. Med Image Anal. 2001 Dec;5(4):237-54 [PMID: 11731304]
  52. Neuroimage. 2010 Feb 1;49(3):2520-5 [PMID: 19539039]
  53. J Biomech. 2016 May 3;49(7):1042-1049 [PMID: 26920505]
  54. PLoS One. 2012;7(1):e29888 [PMID: 22276134]
  55. Med Image Anal. 2021 Dec;74:102212 [PMID: 34587584]
  56. Neuroimage. 2008 Jan 1;39(1):336-47 [PMID: 17931890]

Grants

  1. R01 AG058853/NIA NIH HHS
  2. R01 EB027577/NIBIB NIH HHS

Word Cloud

Created with Highcharts 10.0.0propertiesbrainanisotropicMREmechanicaldifferencesisotropicwhitemattertractshealthyrange:-MagneticelastographymaterialparametertransverselyTI-NLIestimateindividualsignificantshearanisotropy0variabilityresonanceMRItechniqueimagingvivoshownneuroanatomicalregionssensitivityagingneurologicaldisordersnormalfunctionPaststudiesinvestigatingtypicallyassumedmechanicallythoughalignedfiberssuggestmodelconsideredaccurateestimationusednonlinearinversionalgorithmmultiexcitationparametersyoungadultsfoundthreerecoveredparameters:substratestiffness257302kPa-0026164tensile5591049AdditionallydemonstratedrepeatabilityestimatestermslowerrepeatedmeasuressinglesubjectrelativesamplepopulationobservedsegmentscorpuscallosumgenubodyspleniumexpectedbasedaxonalmicrostructurestudyshowsabilitypresentsreferencethroughoutAnisotropichumanestimatedmulti-excitationMRAnisotropyBrainResonanceElastographyStiffnessWhiteMatter

Similar Articles

Cited By (11)