Sensitivity analyses in longitudinal clinical trials via distributional imputation.

Siyi Liu, Shu Yang, Yilong Zhang, Guanghan Frank Liu
Author Information
  1. Siyi Liu: Department of Statistics, North Carolina State University, Raleigh, NC, USA.
  2. Shu Yang: Department of Statistics, North Carolina State University, Raleigh, NC, USA. ORCID
  3. Yilong Zhang: Merck & Co., Inc., Kenilworth, NJ, USA. ORCID
  4. Guanghan Frank Liu: Merck & Co., Inc., Kenilworth, NJ, USA.

Abstract

Missing data is inevitable in longitudinal clinical trials. Conventionally, the missing at random assumption is assumed to handle missingness, which however is unverifiable empirically. Thus, sensitivity analyses are critically important to assess the robustness of the study conclusions against untestable assumptions. Toward this end, regulatory agencies and the pharmaceutical industry use sensitivity models such as return-to-baseline, control-based, and washout imputation, following the ICH E9(R1) guidance. Multiple imputation is popular in sensitivity analyses; however, it may be inefficient and result in an unsatisfying interval estimation by Rubin's combining rule. We propose distributional imputation in sensitivity analysis, which imputes each missing value by samples from its target imputation model given the observed data. Drawn on the idea of Monte Carlo integration, the distributional imputation estimator solves the mean estimating equations of the imputed dataset. It is fully efficient with theoretical guarantees. Moreover, we propose weighted bootstrap to obtain a consistent variance estimator, taking into account the variabilities due to model parameter estimation and target parameter estimation. The superiority of the distributional imputation framework is validated in the simulation study and an antidepressant longitudinal clinical trial.

Keywords

References

  1. Biometrics. 1996 Mar;52(1):98-111 [PMID: 8934587]
  2. J Biopharm Stat. 2013;23(6):1352-71 [PMID: 24138436]
  3. Ther Innov Regul Sci. 2020 Mar;54(2):353-364 [PMID: 32072593]
  4. Stat Methods Med Res. 2019 Jan;28(1):289-308 [PMID: 28747095]
  5. Biometrics. 2012 Sep;68(3):697-706 [PMID: 22150612]
  6. J Biopharm Stat. 2016;26(5):924-36 [PMID: 26418282]
  7. Scand Stat Theory Appl. 2023 Mar;50(1):235-265 [PMID: 36844478]
  8. Pharm Stat. 2017 Sep;16(5):378-392 [PMID: 28631331]
  9. Stat Med. 2020 Sep 20;39(21):2815-2842 [PMID: 32419182]
  10. Am J Epidemiol. 2004 Aug 15;160(4):384-92 [PMID: 15286024]
  11. Stat Med. 2018 Apr 30;37(9):1467-1481 [PMID: 29333672]
  12. Diabetes Obes Metab. 2019 Apr;21(4):781-790 [PMID: 30393950]
  13. Biometrics. 2023 Mar;79(1):230-240 [PMID: 34453313]
  14. Stat Methods Med Res. 2016 Dec;25(6):2541-2557 [PMID: 24682265]
  15. N Engl J Med. 2012 Oct 4;367(14):1355-60 [PMID: 23034025]
  16. Ther Innov Regul Sci. 2014 Jan;48(1):68-80 [PMID: 30231419]

Grants

  1. R01 AG066883/NIA NIH HHS
  2. R01 ES031651/NIEHS NIH HHS

MeSH Term

Models, Statistical
Computer Simulation
Antidepressive Agents
Monte Carlo Method
Benzenesulfonates

Chemicals

Antidepressive Agents
Benzenesulfonates

Word Cloud

Created with Highcharts 10.0.0imputationsensitivitydistributionalclinicaldatalongitudinalmissinganalysesestimationtrialshoweverstudyproposeanalysistargetmodelestimatorparametertrialMissinginevitableConventionallyrandomassumptionassumedhandlemissingnessunverifiableempiricallyThuscriticallyimportantassessrobustnessconclusionsuntestableassumptionsTowardendregulatoryagenciespharmaceuticalindustryusemodelsreturn-to-baselinecontrol-basedwashoutfollowingICHE9R1guidanceMultiplepopularmayinefficientresultunsatisfyingintervalRubin'scombiningruleimputesvaluesamplesgivenobservedDrawnideaMonteCarlointegrationsolvesmeanestimatingequationsimputeddatasetfullyefficienttheoreticalguaranteesMoreoverweightedbootstrapobtainconsistentvariancetakingaccountvariabilitiesduesuperiorityframeworkvalidatedsimulationantidepressantSensitivityviaLongitudinalmultiple

Similar Articles

Cited By