Evaporation-driven liquid flow in sessile droplets.

Hanneke Gelderblom, Christian Diddens, Alvaro Marin
Author Information
  1. Hanneke Gelderblom: Department of Applied Physics and Institute for Complex Molecular Systems, Eindhoven University of Technology, The Netherlands. h.gelderblom@tue.nl. ORCID
  2. Christian Diddens: Physics of Fluids, University of Twente, The Netherlands. c.diddens@utwente.nl. ORCID
  3. Alvaro Marin: Physics of Fluids, University of Twente, The Netherlands. c.diddens@utwente.nl. ORCID

Abstract

The evaporation of a sessile droplet spontaneously induces an internal capillary liquid flow. The surface-tension driven minimisation of surface area and/or surface-tension differences at the liquid-gas interface caused by evaporation-induced temperature or chemical gradients set the liquid into motion. This flow drags along suspended material and is one of the keys to control the material deposition in the stain that is left behind by a drying droplet. Applications of this principle range from the control of stain formation in the printing and coating industry, to the analysis of DNA, to forensic and medical research on blood stains, and to the use of evaporation-driven self-assembly for nanotechnology. Therefore, the evaporation of sessile droplets attracts an enormous interest from not only the fluid dynamics, but also the soft matter, chemistry, biology, engineering, nanotechnology and mathematics communities. As a consequence of this broad interest, knowledge on evaporation-driven flows in drying droplets has remained scattered among the different fields, leading to various misconceptions and misinterpretations. In this review we aim to unify these views, and reflect on the current understanding of evaporation-driven liquid flows in sessile droplets in the light of the most recent experimental and theoretical advances. In addition, we outline open questions and indicate promising directions for future research.

References

  1. Phys Rev Lett. 2011 May 20;106(20):205701 [PMID: 21668243]
  2. Langmuir. 2018 May 8;34(18):5303-5311 [PMID: 29652501]
  3. Langmuir. 2005 Apr 26;21(9):3963-71 [PMID: 15835962]
  4. Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Feb;71(2 Pt 2):027301 [PMID: 15783459]
  5. Nat Mater. 2011 Dec 04;11(2):138-42 [PMID: 22138792]
  6. Biophys J. 1991 Dec;60(6):1438-44 [PMID: 19431815]
  7. Langmuir. 2005 Aug 30;21(18):8226-33 [PMID: 16114925]
  8. Adv Colloid Interface Sci. 2007 Oct 31;134-135:201-23 [PMID: 17601481]
  9. J Colloid Interface Sci. 2022 Sep 15;622:892-903 [PMID: 35561609]
  10. Chem Soc Rev. 2018 Jan 22;47(2):558-585 [PMID: 29090296]
  11. Soft Matter. 2019 Feb 6;15(6):1186-1199 [PMID: 30601564]
  12. Soft Matter. 2020 Aug 12;16(31):7185-7190 [PMID: 32724969]
  13. Soft Matter. 2020 Apr 29;16(16):3846-3868 [PMID: 32285071]
  14. Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Sep;78(3 Pt 2):036324 [PMID: 18851160]
  15. Langmuir. 2012 Mar 20;28(11):4984-8 [PMID: 22369657]
  16. J Phys Chem B. 2012 Jun 7;116(22):6536-42 [PMID: 22587569]
  17. Phys Rev Lett. 2011 Aug 19;107(8):085502 [PMID: 21929173]
  18. J Bionic Eng. 2020;17(4):793-794 [PMID: 32834809]
  19. J Colloid Interface Sci. 2012 Mar 15;370(1):155-61 [PMID: 22284570]
  20. Langmuir. 2014 Jul 1;30(25):7609-14 [PMID: 24933625]
  21. Langmuir. 2009 Jun 16;25(12):6690-5 [PMID: 19323504]
  22. Phys Rev Lett. 2010 Sep 24;105(13):136102 [PMID: 21230790]
  23. Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Oct;72(4 Pt 2):047301 [PMID: 16383581]
  24. Proc Natl Acad Sci U S A. 2016 Aug 2;113(31):8642-7 [PMID: 27418601]
  25. Angew Chem Int Ed Engl. 2012 Feb 13;51(7):1534-46 [PMID: 22311809]
  26. J Phys Chem Lett. 2018 Feb 1;9(3):659-664 [PMID: 29363979]
  27. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 2000 Jan;61(1):475-85 [PMID: 11046287]
  28. Proc Natl Acad Sci U S A. 2012 Oct 9;109(41):16455-8 [PMID: 23010925]
  29. Phys Rev Lett. 2021 Jun 4;126(22):228003 [PMID: 34152169]
  30. Adv Colloid Interface Sci. 2014 Apr;206:372-81 [PMID: 23746427]
  31. Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Apr;73(4 Pt 1):041201 [PMID: 16711786]
  32. Adv Colloid Interface Sci. 2018 Feb;252:38-54 [PMID: 29310771]
  33. Soft Matter. 2019 Feb 13;15(7):1488-1496 [PMID: 30570633]
  34. Phys Rev Lett. 2016 Mar 25;116(12):124501 [PMID: 27058080]
  35. Sci Rep. 2021 Jan 15;11(1):1516 [PMID: 33452334]
  36. Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Jan;87(1):013003 [PMID: 23410422]
  37. J Colloid Interface Sci. 2020 Nov 1;579:888-897 [PMID: 32679386]
  38. Langmuir. 2005 Apr 26;21(9):3972-80 [PMID: 15835963]
  39. Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Feb;83(2 Pt 2):026306 [PMID: 21405905]
  40. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 2000 Jul;62(1 Pt B):756-65 [PMID: 11088531]
  41. J Fluid Mech. 2020 Jun 10;892: [PMID: 33776139]
  42. Langmuir. 2016 Jul 12;32(27):6871-81 [PMID: 27300638]
  43. Phys Rev E. 2019 Sep;100(3-1):033103 [PMID: 31639903]
  44. Langmuir. 2006 Mar 28;22(7):3186-91 [PMID: 16548576]
  45. J Phys Condens Matter. 2017 Feb 22;29(7):074001 [PMID: 28035085]
  46. Adv Colloid Interface Sci. 2012 Jan 15;170(1-2):67-86 [PMID: 22277832]
  47. Langmuir. 2022 Oct 4;38(39):12082-12094 [PMID: 36094143]
  48. Nat Mater. 2006 Apr;5(4):265-70 [PMID: 16547519]
  49. Adv Colloid Interface Sci. 2014 Apr;206:399-413 [PMID: 24331374]
  50. Phys Rev Lett. 2019 Mar 22;122(11):114501 [PMID: 30951342]
  51. Phys Rev Lett. 2013 Jan 11;110(2):028303 [PMID: 23383946]
  52. Langmuir. 2012 Aug 7;28(31):11433-9 [PMID: 22775413]
  53. Langmuir. 2011 Nov 1;27(21):12834-43 [PMID: 21870776]
  54. Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Jan;79(1 Pt 2):016301 [PMID: 19257133]
  55. Phys Rev Lett. 2002 Apr 22;88(16):164501 [PMID: 11955235]
  56. Soft Matter. 2016 Feb 7;12(5):1593-600 [PMID: 26659361]
  57. J Colloid Interface Sci. 2007 Aug 1;312(1):164-71 [PMID: 17547938]
  58. Nat Commun. 2013;4:1757 [PMID: 23612298]
  59. J Colloid Interface Sci. 2017 Feb 1;487:426-436 [PMID: 27810511]
  60. Nature. 2011 Aug 17;476(7360):308-11 [PMID: 21850105]
  61. Soft Matter. 2015 Feb 7;11(5):987-93 [PMID: 25520154]
  62. Soft Matter. 2021 Jan 21;17(3):506-515 [PMID: 33231247]
  63. Phys Rev E. 2016 Dec;94(6-1):063104 [PMID: 28085318]
  64. Langmuir. 2018 Jun 12;34(23):6955-6962 [PMID: 29757650]
  65. Langmuir. 2013 May 28;29(21):6221-31 [PMID: 23611508]
  66. Phys Rev Lett. 2007 Dec 7;99(23):234502 [PMID: 18233371]
  67. Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Mar;71(3 Pt 2B):036313 [PMID: 15903580]
  68. Phys Rev E Stat Nonlin Soft Matter Phys. 2004 May;69(5 Pt 2):056308 [PMID: 15244933]
  69. Phys Rev Lett. 2018 Nov 2;121(18):184501 [PMID: 30444392]
  70. J Colloid Interface Sci. 2021 Feb 15;584:622-633 [PMID: 33129516]
  71. Soft Matter. 2016 May 7;12(17):4007-23 [PMID: 27025167]
  72. J Phys Chem B. 2006 Apr 13;110(14):7090-4 [PMID: 16599468]
  73. Langmuir. 2008 Nov 4;24(21):12369-74 [PMID: 18844390]
  74. Langmuir. 2015 Mar 24;31(11):3354-67 [PMID: 25742508]

MeSH Term

Surface Tension
Hydrodynamics
Motion
Nanotechnology
Temperature

Word Cloud

Created with Highcharts 10.0.0sessileliquiddropletsflowevaporation-drivenevaporationdropletsurface-tensionmaterialcontrolstaindryingresearchnanotechnologyinterestflowsspontaneouslyinducesinternalcapillarydrivenminimisationsurfaceareaand/ordifferencesliquid-gasinterfacecausedevaporation-inducedtemperaturechemicalgradientssetmotiondragsalongsuspendedonekeysdepositionleftbehindApplicationsprinciplerangeformationprintingcoatingindustryanalysisDNAforensicmedicalbloodstainsuseself-assemblyThereforeattractsenormousfluiddynamicsalsosoftmatterchemistrybiologyengineeringmathematicscommunitiesconsequencebroadknowledgeremainedscatteredamongdifferentfieldsleadingvariousmisconceptionsmisinterpretationsreviewaimunifyviewsreflectcurrentunderstandinglightrecentexperimentaltheoreticaladvancesadditionoutlineopenquestionsindicatepromisingdirectionsfutureEvaporation-driven

Similar Articles

Cited By