Spatial proliferation of African swine fever virus in South Korea.

Shraddha Tiwari, Thakur Dhakal, Ishwari Tiwari, Gab-Sue Jang, Yeonsu Oh
Author Information
  1. Shraddha Tiwari: Department of Veterinary Pathology, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Republic of Korea. ORCID
  2. Thakur Dhakal: Department of Life Science, Yeungnam University, Gyeongbuk, Republic of South Korea.
  3. Ishwari Tiwari: Department of Anatomy, Physiology and Biochemistry, Agriculture and Forestry University, Chitwan, Nepal.
  4. Gab-Sue Jang: Department of Life Science, Yeungnam University, Gyeongbuk, Republic of South Korea.
  5. Yeonsu Oh: Department of Veterinary Pathology, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Republic of Korea.

Abstract

The African swine fever virus (ASFV) was first detected in South Korea on a pig farm in September 2019. Despite active preventive measures to control the spread of ASFV, outbreaks on pig farms and in wild boar have been increasing. In this study, we investigated the spatial contamination area using the minimum convex polygon (MCP) approach, and growth rate using a logistic diffusion model. On the basis of the ASFV outbreak locations recorded from September 17th, 2019, to May 20th, 2022, the MCP area for the second week was 618.41 km2 and expanded to 37959.67 km2 in the final week. The maximum asymptote of the logistic function was considered as the land area of South Korea, and we estimated logistic growth rates of 0.022 km2 per week and 0.094 km2 per month. Administrative bodies should implement preventive and quarantine measures for infectious diseases. The results of this study will be a reference for epidemiologists, ecologists, and policy makers and contribute to the establishment of appropriate quarantine measures for disease control and management.

References

  1. J Vet Sci. 2021 Jan;22(1):e13 [PMID: 33522165]
  2. Transbound Emerg Dis. 2020 Mar;67(2):473-475 [PMID: 31955520]
  3. Sci Rep. 2020 Apr 3;10(1):5895 [PMID: 32246098]
  4. Prev Vet Med. 2011 Dec 1;102(3):167-74 [PMID: 21840611]
  5. Viruses. 2021 Oct 14;13(10): [PMID: 34696492]
  6. Vet Sci. 2019 Dec 27;7(1): [PMID: 31892104]
  7. Vet Rec. 2016 Mar 12;178(11):262-7 [PMID: 26966305]
  8. Vet Microbiol. 2019 Oct;237:108345 [PMID: 31521391]
  9. PeerJ Comput Sci. 2021 Jul 5;7:e623 [PMID: 34307865]
  10. Philos Trans R Soc Lond B Biol Sci. 2010 Jul 27;365(1550):2221-31 [PMID: 20566499]
  11. Front Vet Sci. 2022 Apr 27;9:844209 [PMID: 35573420]
  12. Transbound Emerg Dis. 2017 Apr;64(2):656-662 [PMID: 26392004]
  13. Vet J. 2018 Mar;233:41-48 [PMID: 29486878]
  14. J Vet Sci. 2020 Mar;21(2):e38 [PMID: 32233141]
  15. PLoS One. 2015 May 04;10(5):e0125842 [PMID: 25938429]
  16. Vaccines (Basel). 2020 Sep 12;8(3): [PMID: 32932614]
  17. Vaccines (Basel). 2017 Oct 07;5(4): [PMID: 28991171]
  18. IEEE Trans Vis Comput Graph. 2012 Dec;18(12):2603-12 [PMID: 26357169]
  19. Vet Sci. 2022 Mar 22;9(4): [PMID: 35448648]
  20. EFSA J. 2021 Jun 21;19(6):e06676 [PMID: 34188718]
  21. Front Vet Sci. 2017 Jul 17;4:105 [PMID: 28770215]
  22. Porcine Health Manag. 2020 Jul 02;6:17 [PMID: 32626597]
  23. Zootaxa. 2018 Nov 18;4522(1):1-216 [PMID: 30486139]
  24. Phys Life Rev. 2016 Sep;18:66-97 [PMID: 27451336]
  25. PLoS One. 2020 Oct 20;15(10):e0240578 [PMID: 33079964]
  26. Conserv Biol. 2021 Feb;35(1):346-359 [PMID: 32323365]
  27. Transbound Emerg Dis. 2015 Jun;62(3):272-9 [PMID: 23926953]
  28. J Vet Sci. 2021 Sep;22(5):e71 [PMID: 34553516]
  29. Animals (Basel). 2021 Mar 18;11(3): [PMID: 33803495]
  30. Viruses. 2017 May 10;9(5): [PMID: 28489063]
  31. PeerJ. 2021 Mar 19;9:e11031 [PMID: 33954027]
  32. Ecol Evol. 2020 Feb 18;10(6):2846-2859 [PMID: 32211160]

MeSH Term

Swine
Animals
African Swine Fever Virus
African Swine Fever
Farms
Disease Outbreaks
Cell Proliferation
Sus scrofa
Swine Diseases

Word Cloud

Created with Highcharts 10.0.0km2ASFVSouthKoreameasuresarealogisticweekAfricanswinefeverviruspigSeptember2019preventivecontrolstudyusingMCPgrowth0perquarantinefirstdetectedfarmDespiteactivespreadoutbreaksfarmswildboarincreasinginvestigatedspatialcontaminationminimumconvexpolygonapproachratediffusionmodelbasisoutbreaklocationsrecorded17thMay20th2022second61841expanded3795967finalmaximumasymptotefunctionconsideredlandestimatedrates022094monthAdministrativebodiesimplementinfectiousdiseasesresultswillreferenceepidemiologistsecologistspolicymakerscontributeestablishmentappropriatediseasemanagementSpatialproliferation

Similar Articles

Cited By