Ceragenin CSA-13 displays high antibacterial efficiency in a mouse model of urinary tract infection.

Urszula Wnorowska, Ewelina Piktel, Piotr Deptuła, Tomasz Wollny, Grzegorz Król, Katarzyna Głuszek, Bonita Durnaś, Katarzyna Pogoda, Paul B Savage, Robert Bucki
Author Information
  1. Urszula Wnorowska: Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2C, 15-222, Białystok, Poland.
  2. Ewelina Piktel: Independent Laboratory of Nanomedicine, Medical University of Białystok, Mickiewicza 2B, 15-222, Białystok, Poland.
  3. Piotr Deptuła: Independent Laboratory of Nanomedicine, Medical University of Białystok, Mickiewicza 2B, 15-222, Białystok, Poland.
  4. Tomasz Wollny: Holy Cross Oncology Center of Kielce, Artwińskiego 3, 25-734, Kielce, Poland.
  5. Grzegorz Król: Institute of Medical Science, Collegium Medicum, Jan Kochanowski University of Kielce, IX Wieków Kielc 19A, 25-317, Kielce, Poland.
  6. Katarzyna Głuszek: Institute of Medical Science, Collegium Medicum, Jan Kochanowski University of Kielce, 25-001, Kielce, Poland.
  7. Bonita Durnaś: Institute of Medical Science, Collegium Medicum, Jan Kochanowski University of Kielce, IX Wieków Kielc 19A, 25-317, Kielce, Poland.
  8. Katarzyna Pogoda: Institute of Nuclear Physics Polish Academy of Sciences, 31-342, Kraków, Poland. ORCID
  9. Paul B Savage: Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA.
  10. Robert Bucki: Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2C, 15-222, Białystok, Poland. buckirobert@gmail.com. ORCID

Abstract

Ceragenins (CSAs) are synthetic, lipid-based molecules that display activities of natural antimicrobial peptides. Previous studies demonstrated their high in vitro activity against pathogens causing urinary tract infections (UTIs), but their efficiency in vivo was not explored to date. In this study, we aimed to investigate the bactericidal efficiency of ceragenins against E. coli (Xen14 and clinical UPEC strains) isolates both in vitro and in vivo, as well to explore CSA-13 biodistribution and ability to modulate nanomechanical alterations of infected tissues using animal model of UTI. CSA-44, CSA-131 and particularly CSA-13 displayed potent bactericidal effect against tested E. coli strains, and this effect was mediated by induction of oxidative stress. Biodistribution studies indicated that CSA-13 accumulates in kidneys and liver and is eliminated with urine and bile acid. We also observed that ceragenin CSA-13 reverses infection-induced alterations in mechanical properties of mouse bladders tissue, which confirms the preventive role of CSA-13 against bacteria-induced tissue damage and potentially promote the restoration of microenvironment with biophysical features unfavorable for bacterial growth and spreading. These data justify the further work on employment of CSA-13 in the treatment of urinary tract infections.

References

  1. J Colloid Interface Sci. 2019 Sep 15;552:247-257 [PMID: 31129296]
  2. mBio. 2022 Jan 25;:e0272621 [PMID: 35073755]
  3. Biomed Res Int. 2014;2014:710273 [PMID: 24804236]
  4. J Lab Physicians. 2019 Jan-Mar;11(1):17-22 [PMID: 30983797]
  5. J Immunol. 2011 Dec 15;187(12):6402-9 [PMID: 22095714]
  6. Front Cell Infect Microbiol. 2020 Sep 29;10:492 [PMID: 33134184]
  7. PLoS Pathog. 2020 Jan 9;16(1):e1008247 [PMID: 31917805]
  8. Infect Control Hosp Epidemiol. 2004 Nov;25(11):974-8 [PMID: 15566033]
  9. Dis Mon. 2003 Feb;49(2):129-47 [PMID: 12601342]
  10. Antimicrob Agents Chemother. 2015 Oct;59(10):6274-82 [PMID: 26248361]
  11. RSC Adv. 2019;9(25):14472-14476 [PMID: 32864109]
  12. Anal Bioanal Chem. 2016 Jan;408(1):165-76 [PMID: 26476923]
  13. Micron. 2014 Oct;65:1-9 [PMID: 25041825]
  14. Nat Rev Microbiol. 2015 May;13(5):269-84 [PMID: 25853778]
  15. Antimicrob Agents Chemother. 1984 Dec;26(6):811-4 [PMID: 6335381]
  16. Int J Nanomedicine. 2021 Mar 09;16:1993-2011 [PMID: 33727811]
  17. Clin Infect Dis. 2004 Apr 15;38(8):1150-8 [PMID: 15095222]
  18. Int J Mol Sci. 2021 May 25;22(11): [PMID: 34070700]
  19. Antimicrob Agents Chemother. 2003 Mar;47(3):1002-9 [PMID: 12604534]
  20. Acc Chem Res. 2008 Oct;41(10):1233-40 [PMID: 18616297]
  21. Am J Respir Cell Mol Biol. 2015 Feb;52(2):152-61 [PMID: 24992633]
  22. Scanning. 2016 Nov;38(6):792-801 [PMID: 27280953]
  23. J Nanobiotechnology. 2020 Jan 2;18(1):3 [PMID: 31898542]
  24. Arch Biochem Biophys. 2012 Feb 15;518(2):151-6 [PMID: 22209753]
  25. Pathogens. 2016 Jan 27;5(1): [PMID: 26828523]
  26. ACS Biomater Sci Eng. 2020 Oct 12;6(10):5620-5631 [PMID: 33062848]
  27. Org Lett. 2000 Sep 7;2(18):2837-40 [PMID: 10964378]
  28. FEBS Lett. 2006 Jan 23;580(2):450-4 [PMID: 16376879]
  29. Dtsch Arztebl Int. 2010 May;107(21):361-7 [PMID: 20539810]
  30. Nat Rev Urol. 2020 Aug;17(8):439-458 [PMID: 32661333]
  31. J Antimicrob Chemother. 2012 Nov;67(11):2665-72 [PMID: 22899801]
  32. Biophys J. 2006 Nov 1;91(9):3508-18 [PMID: 16891365]
  33. BMC Infect Dis. 2018 Jan 8;18(1):17 [PMID: 29310594]
  34. J Invest Dermatol. 2009 Nov;129(11):2668-75 [PMID: 19516269]
  35. Int J Nanomedicine. 2020 Jun 24;15:4573-4589 [PMID: 32606693]
  36. Langmuir. 2014 Sep 2;30(34):10354-62 [PMID: 25117376]
  37. BMC Infect Dis. 2019 May 2;19(1):369 [PMID: 31046689]
  38. Commun Biol. 2021 Aug 26;4(1):1011 [PMID: 34446834]
  39. Indian J Pharm Sci. 2008 May-Jun;70(3):269-77 [PMID: 20046732]
  40. Expert Rev Med Devices. 2007 Mar;4(2):215-25 [PMID: 17359226]
  41. Ther Adv Urol. 2019 May 02;11:1756287218814382 [PMID: 31105772]
  42. Trends Microbiol. 2017 Apr;25(4):257-266 [PMID: 28089324]
  43. Antimicrob Agents Chemother. 2010 Sep;54(9):3708-13 [PMID: 20585129]
  44. Acta Biomater. 2021 Sep 15;132:245-259 [PMID: 34280559]
  45. Bionanoscience. 2016;6:65-80 [PMID: 27014560]
  46. Indian J Pathol Microbiol. 2009 Apr-Jun;52(2):294 [PMID: 19332956]
  47. Sci Rep. 2017 Jul 4;7(1):4610 [PMID: 28676673]
  48. Pharmaceutics. 2021 Nov 16;13(11): [PMID: 34834355]
  49. J Nanobiotechnology. 2019 Feb 2;17(1):22 [PMID: 30711007]
  50. Sci Rep. 2017 Mar 15;7:44452 [PMID: 28294162]
  51. Oncotarget. 2015 Aug 28;6(25):20946-58 [PMID: 26189182]
  52. Antimicrob Agents Chemother. 2015 Jul;59(7):3808-15 [PMID: 25870055]
  53. Nat Nanotechnol. 2012 Nov;7(11):757-65 [PMID: 23085644]
  54. FEMS Microbiol Lett. 2000 Feb 15;183(2):201-7 [PMID: 10675584]
  55. PLoS One. 2014 Jul 09;9(7):e101037 [PMID: 25006964]
  56. JAMA. 2014 Feb 26;311(8):844-54 [PMID: 24570248]
  57. Int J Infect Dis. 2015 May;34:55-60 [PMID: 25748571]
  58. Appl Microbiol Biotechnol. 2004 Feb;63(5):520-6 [PMID: 14556041]
  59. Pharmaceutics. 2021 Mar 22;13(3): [PMID: 33809901]
  60. Methods Mol Biol. 2016;1333:159-75 [PMID: 26468108]
  61. Acta Parasitol. 2016 Mar;61(2):376-81 [PMID: 27078662]
  62. Clin Microbiol Rev. 2002 Apr;15(2):167-93 [PMID: 11932229]
  63. Clin Pharmacokinet. 1990 Dec;19(6):434-61 [PMID: 2292168]
  64. Int J Nanomedicine. 2016 Oct 19;11:5443-5455 [PMID: 27799768]
  65. Cell Microbiol. 2020 May;22(5):e13196 [PMID: 32083802]
  66. Front Microbiol. 2019 Feb 18;10:210 [PMID: 30833936]
  67. Infect Drug Resist. 2020 Sep 28;13:3277-3294 [PMID: 33061475]
  68. Cancers (Basel). 2021 Oct 29;13(21): [PMID: 34771587]
  69. Oral Microbiol Immunol. 2009 Apr;24(2):170-2 [PMID: 19239645]
  70. J Bacteriol. 2008 Feb;190(3):1054-63 [PMID: 18055599]
  71. Dev Cell. 2021 Feb 22;56(4):443-460.e11 [PMID: 33621492]

MeSH Term

Mice
Animals
Escherichia coli
Tissue Distribution
Anti-Bacterial Agents
Urinary Tract Infections

Chemicals

ceragenin CSA-13
Anti-Bacterial Agents

Word Cloud

Created with Highcharts 10.0.0CSA-13urinarytractefficiencystudieshighvitroinfectionsvivobactericidalEcolistrainsalterationsmodeleffectmousetissueCerageninsCSAssyntheticlipid-basedmoleculesdisplayactivitiesnaturalantimicrobialpeptidesPreviousdemonstratedactivitypathogenscausingUTIsexploreddatestudyaimedinvestigatecerageninsXen14clinicalUPECisolateswellexplorebiodistributionabilitymodulatenanomechanicalinfectedtissuesusinganimalUTICSA-44CSA-131particularlydisplayedpotenttestedmediatedinductionoxidativestressBiodistributionindicatedaccumulateskidneyslivereliminatedurinebileacidalsoobservedcerageninreversesinfection-inducedmechanicalpropertiesbladdersconfirmspreventiverolebacteria-induceddamagepotentiallypromoterestorationmicroenvironmentbiophysicalfeaturesunfavorablebacterialgrowthspreadingdatajustifyworkemploymenttreatmentCeragenindisplaysantibacterialinfection

Similar Articles

Cited By