Generalization of Deep Learning in Digital Pathology: Experience in Breast Cancer Metastasis Detection.

Sofia Jarkman, Micael Karlberg, Milda Pocevičiūtė, Anna Bodén, Péter Bándi, Geert Litjens, Claes Lundström, Darren Treanor, Jeroen van der Laak
Author Information
  1. Sofia Jarkman: Department of Clinical Pathology, and Department of Biomedical and Clinical Sciences, Linköping University, 581 83 Linköping, Sweden. ORCID
  2. Micael Karlberg: Center for Medical Image Science and Visualization (CMIV), Linköping University, 581 85 Linköping, Sweden.
  3. Milda Pocevičiūtė: Center for Medical Image Science and Visualization (CMIV), Linköping University, 581 85 Linköping, Sweden.
  4. Anna Bodén: Department of Clinical Pathology, and Department of Biomedical and Clinical Sciences, Linköping University, 581 83 Linköping, Sweden.
  5. Péter Bándi: Department of Pathology, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands.
  6. Geert Litjens: Department of Pathology, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands. ORCID
  7. Claes Lundström: Center for Medical Image Science and Visualization (CMIV), Linköping University, 581 85 Linköping, Sweden. ORCID
  8. Darren Treanor: Department of Clinical Pathology, and Department of Biomedical and Clinical Sciences, Linköping University, 581 83 Linköping, Sweden.
  9. Jeroen van der Laak: Center for Medical Image Science and Visualization (CMIV), Linköping University, 581 85 Linköping, Sweden. ORCID

Abstract

Poor generalizability is a major barrier to clinical implementation of artificial intelligence in digital pathology. The aim of this study was to test the generalizability of a pretrained deep learning model to a new diagnostic setting and to a small change in surgical indication. A deep learning model for breast cancer metastases detection in sentinel lymph nodes, trained on CAMELYON multicenter data, was used as a base model, and achieved an AUC of 0.969 (95% CI 0.926-0.998) and FROC of 0.838 (95% CI 0.757-0.913) on CAMELYON16 test data. On local sentinel node data, the base model performance dropped to AUC 0.929 (95% CI 0.800-0.998) and FROC 0.744 (95% CI 0.566-0.912). On data with a change in surgical indication (axillary dissections) the base model performance indicated an even larger drop with a FROC of 0.503 (95%CI 0.201-0.911). The model was retrained with addition of local data, resulting in about a 4% increase for both AUC and FROC for sentinel nodes, and an increase of 11% in AUC and 49% in FROC for axillary nodes. Pathologist qualitative evaluation of the retrained model´s output showed no missed positive slides. False positives, false negatives and one previously undetected micro-metastasis were observed. The study highlights the generalization challenge even when using a multicenter trained model, and that a small change in indication can considerably impact the model´s performance.

Keywords

References

  1. Lancet Oncol. 2020 Feb;21(2):222-232 [PMID: 31926806]
  2. Med Image Anal. 2019 Dec;58:101544 [PMID: 31466046]
  3. JAMA. 2017 Dec 12;318(22):2199-2210 [PMID: 29234806]
  4. J Intern Med. 2020 Jul;288(1):62-81 [PMID: 32128929]
  5. Nat Rev Cancer. 2021 Mar;21(3):199-211 [PMID: 33514930]
  6. Gigascience. 2018 Jun 1;7(6): [PMID: 29860392]
  7. Am J Surg Pathol. 2018 Dec;42(12):1636-1646 [PMID: 30312179]
  8. Toxicol Pathol. 2021 Jun;49(4):711-713 [PMID: 33571073]
  9. IEEE Trans Med Imaging. 2019 Feb;38(2):550-560 [PMID: 30716025]
  10. Annu Rev Biomed Eng. 2017 Jun 21;19:221-248 [PMID: 28301734]
  11. Nat Med. 2021 May;27(5):775-784 [PMID: 33990804]
  12. J Pathol Inform. 2021 Aug 04;12:30 [PMID: 34497734]
  13. Breast. 2022 Mar;62 Suppl 1:S25-S28 [PMID: 34810049]
  14. Nucl Instrum Methods Phys Res A. 2011 Aug 21;648 Supplement 1:S297-S301 [PMID: 21804679]
  15. Mod Pathol. 2021 Mar;34(3):660-671 [PMID: 32759979]
  16. Virchows Arch. 2021 Feb;478(2):335-341 [PMID: 32719890]
  17. J Big Data. 2021;8(1):101 [PMID: 34306963]
  18. J Pathol Transl Med. 2016 Mar;50(2):83-95 [PMID: 26757203]
  19. ESMO Open. 2021 Jun;6(3):100151 [PMID: 33984674]
  20. Comput Biol Med. 2021 Jan;128:104129 [PMID: 33254082]
  21. J Clin Pathol. 2015 Mar;68(3):192-9 [PMID: 25480984]
  22. Med Image Anal. 2023 Apr;85:102755 [PMID: 36724605]

Grants

  1. 2017-02447/VINNOVA

Word Cloud

Created with Highcharts 10.0.00modeldataFROCAUC95%CIpathologydeeplearningchangeindicationsentinelnodesbaseperformancegeneralizabilityartificialintelligencedigitalstudytestsmallsurgicalbreastcancermetastaseslymphtrainedmulticenter998localnodeaxillaryevenretrainedincreasemodel´sgeneralizationPoormajorbarrierclinicalimplementationaimpretrainednewdiagnosticsettingdetectionCAMELYONusedachieved969926-0838757-0913CAMELYON16dropped929800-0744566-0912dissectionsindicatedlargerdrop50395%CI201-0911additionresulting4%11%49%PathologistqualitativeevaluationoutputshowedmissedpositiveslidesFalsepositivesfalsenegativesonepreviouslyundetectedmicro-metastasisobservedhighlightschallengeusingcanconsiderablyimpactGeneralizationDeepLearningDigitalPathology:ExperienceBreastCancerMetastasisDetectioncomputational

Similar Articles

Cited By