DeepNup: Prediction of Nucleosome Positioning from DNA Sequences Using Deep Neural Network.

Yiting Zhou, Tingfang Wu, Yelu Jiang, Yan Li, Kailong Li, Lijun Quan, Qiang Lyu
Author Information
  1. Yiting Zhou: School of Computer Science and Technology, Soochow University, Suzhou Ganjiang East Streat 333, Suzhou 215006, China.
  2. Tingfang Wu: School of Computer Science and Technology, Soochow University, Suzhou Ganjiang East Streat 333, Suzhou 215006, China. ORCID
  3. Yelu Jiang: School of Computer Science and Technology, Soochow University, Suzhou Ganjiang East Streat 333, Suzhou 215006, China.
  4. Yan Li: School of Computer Science and Technology, Soochow University, Suzhou Ganjiang East Streat 333, Suzhou 215006, China.
  5. Kailong Li: School of Computer Science and Technology, Soochow University, Suzhou Ganjiang East Streat 333, Suzhou 215006, China.
  6. Lijun Quan: School of Computer Science and Technology, Soochow University, Suzhou Ganjiang East Streat 333, Suzhou 215006, China. ORCID
  7. Qiang Lyu: School of Computer Science and Technology, Soochow University, Suzhou Ganjiang East Streat 333, Suzhou 215006, China.

Abstract

Nucleosome positioning is involved in diverse cellular biological processes by regulating the accessibility of DNA sequences to DNA-binding proteins and plays a vital role. Previous studies have manifested that the intrinsic preference of nucleosomes for DNA sequences may play a dominant role in nucleosome positioning. As a consequence, it is nontrivial to develop computational methods only based on DNA sequence information to accurately identify nucleosome positioning, and thus intend to verify the contribution of DNA sequences responsible for nucleosome positioning. In this work, we propose a new deep learning-based method, named DeepNup, which enables us to improve the prediction of nucleosome positioning only from DNA sequences. Specifically, we first use a hybrid feature encoding scheme that combines One-hot encoding and Trinucleotide composition encoding to encode raw DNA sequences; afterwards, we employ multiscale convolutional neural network modules that consist of two parallel convolution kernels with different sizes and gated recurrent units to effectively learn the local and global correlation feature representations; lastly, we use a fully connected layer and a sigmoid unit serving as a classifier to integrate these learned high-order feature representations and generate the final prediction outcomes. By comparing the experimental evaluation metrics on two benchmark nucleosome positioning datasets, DeepNup achieves a better performance for nucleosome positioning prediction than that of several state-of-the-art methods. These results demonstrate that DeepNup is a powerful deep learning-based tool that enables one to accurately identify potential nucleosome sequences.

Keywords

References

  1. Bioinformatics. 2012 Dec 1;28(23):3150-2 [PMID: 23060610]
  2. BMC Bioinformatics. 2021 Jun 2;22(Suppl 6):129 [PMID: 34078256]
  3. J Mol Biol. 2002 May 31;319(2):395-406 [PMID: 12051916]
  4. Brief Bioinform. 2014 Nov;15(6):1014-27 [PMID: 24023366]
  5. Annu Rev Biochem. 1977;46:931-54 [PMID: 332067]
  6. Bioinformatics. 2018 May 15;34(10):1705-1712 [PMID: 29329398]
  7. Bioinformatics. 2014 Jun 1;30(11):1522-9 [PMID: 24504871]
  8. Genome Res. 2010 Jan;20(1):90-100 [PMID: 19846608]
  9. Genes Dev. 2010 Apr 15;24(8):748-53 [PMID: 20351051]
  10. Cell. 2008 Mar 7;132(5):887-98 [PMID: 18329373]
  11. Biopolymers. 2009 Dec;91(12):1143-53 [PMID: 19598227]
  12. BMC Bioinformatics. 2010 Jun 24;11:346 [PMID: 20576140]
  13. Nat Struct Mol Biol. 2009 Sep;16(9):996-1001 [PMID: 19684599]
  14. Nat Struct Mol Biol. 2013 Mar;20(3):267-73 [PMID: 23463311]
  15. BMC Bioinformatics. 2018 Nov 20;19(Suppl 14):418 [PMID: 30453896]
  16. J Cell Biol. 1990 Sep;111(3):795-806 [PMID: 2391364]
  17. Nature. 2015 May 28;521(7553):436-44 [PMID: 26017442]
  18. Genome Res. 2015 Aug;25(8):1182-95 [PMID: 26063739]
  19. Brief Bioinform. 2022 Mar 10;23(2): [PMID: 35225328]
  20. Nat Biotechnol. 2015 Aug;33(8):831-8 [PMID: 26213851]
  21. Genome Res. 2008 Jul;18(7):1051-63 [PMID: 18477713]
  22. Genome Res. 2011 Nov;21(11):1863-71 [PMID: 21750105]
  23. Neural Comput. 1997 Nov 15;9(8):1735-80 [PMID: 9377276]
  24. Brief Bioinform. 2021 May 20;22(3): [PMID: 32578842]
  25. PLoS Genet. 2010 Sep 02;6(9):e1001092 [PMID: 20824081]
  26. BMC Bioinformatics. 2020 Sep 16;21(Suppl 8):326 [PMID: 32938377]
  27. J Theor Biol. 2018 Aug 7;450:15-21 [PMID: 29678692]
  28. DNA Repair (Amst). 2005 Mar 2;4(3):389-95 [PMID: 15661662]
  29. Nucleic Acids Res. 2019 Jan 8;47(D1):D163-D169 [PMID: 30335176]
  30. Nature. 2011 Apr 21;472(7343):375-8 [PMID: 21460839]
  31. Nat Struct Mol Biol. 2010 Aug;17(8):918-20 [PMID: 20683473]
  32. Science. 2017 Jan 27;355(6323):415-420 [PMID: 28126821]
  33. Nature. 2003 May 8;423(6936):145-50 [PMID: 12736678]
  34. Genomics. 2016 Mar;107(2-3):69-75 [PMID: 26724497]
  35. Nature. 2011 May 22;474(7352):516-20 [PMID: 21602827]
  36. Cell Rep. 2016 Sep 6;16(10):2651-2665 [PMID: 27568571]
  37. Genome Res. 2016 Mar;26(3):351-64 [PMID: 26772197]
  38. Nature. 1997 Sep 18;389(6648):251-60 [PMID: 9305837]
  39. Nature. 2009 Mar 19;458(7236):362-6 [PMID: 19092803]
  40. PLoS Genet. 2012;8(11):e1003036 [PMID: 23166509]
  41. Trends Genet. 2009 Aug;25(8):335-43 [PMID: 19596482]
  42. Nature. 2008 May 15;453(7193):358-62 [PMID: 18408708]
  43. Nucleic Acids Res. 2009 Aug;37(14):4707-22 [PMID: 19509309]
  44. Cell. 1999 Aug 6;98(3):285-94 [PMID: 10458604]
  45. BMC Genomics. 2022 Apr 13;23(Suppl 1):301 [PMID: 35418074]
  46. Nature. 2012 Jun 28;486(7404):496-501 [PMID: 22722846]
  47. Genome Res. 2016 Jul;26(7):990-9 [PMID: 27197224]

MeSH Term

Nucleosomes
Base Sequence
Saccharomyces cerevisiae
Chromatin Assembly and Disassembly
Neural Networks, Computer

Chemicals

Nucleosomes

Word Cloud

Created with Highcharts 10.0.0positioningnucleosomeDNAsequencesdeepDeepNuppredictionfeatureencodingNucleosomerolemethodsaccuratelyidentifylearning-basedenablesusemultiscaleneuralnetworktwoconvolutiongatedrecurrentrepresentationsunitinvolveddiversecellularbiologicalprocessesregulatingaccessibilityDNA-bindingproteinsplaysvitalPreviousstudiesmanifestedintrinsicpreferencenucleosomesmayplaydominantconsequencenontrivialdevelopcomputationalbasedsequenceinformationthusintendverifycontributionresponsibleworkproposenewmethodnamedusimproveSpecificallyfirsthybridschemecombinesOne-hotTrinucleotidecompositionencoderawafterwardsemployconvolutionalmodulesconsistparallelkernelsdifferentsizesunitseffectivelylearnlocalglobalcorrelationlastlyfullyconnectedlayersigmoidservingclassifierintegratelearnedhigh-ordergeneratefinaloutcomescomparingexperimentalevaluationmetricsbenchmarkdatasetsachievesbetterperformanceseveralstate-of-the-artresultsdemonstratepowerfultoolonepotentialDeepNup:PredictionPositioningSequencesUsingDeepNeuralNetworkbioinformaticslearning

Similar Articles

Cited By