Adult Height, 22q11.2 Deletion Extent, and Short Stature in 22q11.2 Deletion Syndrome.

Tracy Heung, Brigid Conroy, Sarah Malecki, Joanne Ha, Erik Boot, Maria Corral, Anne S Bassett
Author Information
  1. Tracy Heung: Clinical Genetics Research Program, Centre for Addiction and Mental Health, Toronto, ON M5S 2S1, Canada.
  2. Brigid Conroy: Clinical Genetics Research Program, Centre for Addiction and Mental Health, Toronto, ON M5S 2S1, Canada.
  3. Sarah Malecki: Clinical Genetics Research Program, Centre for Addiction and Mental Health, Toronto, ON M5S 2S1, Canada.
  4. Joanne Ha: Clinical Genetics Research Program, Centre for Addiction and Mental Health, Toronto, ON M5S 2S1, Canada.
  5. Erik Boot: The Dalglish Family 22q Clinic, University Health Network, Toronto, ON M5G 2C4, Canada. ORCID
  6. Maria Corral: The Dalglish Family 22q Clinic, University Health Network, Toronto, ON M5G 2C4, Canada.
  7. Anne S Bassett: Clinical Genetics Research Program, Centre for Addiction and Mental Health, Toronto, ON M5S 2S1, Canada. ORCID

Abstract

The 22q11.2 deletion syndrome (22q11.2DS) manifests as a wide range of medical conditions across a number of systems. Pediatric growth deficiency with some catch-up growth is reported, but there are few studies of final adult height. We aimed to investigate how final adult height in 22q11.2DS compared with general population norms, and to examine predictors of short stature in in a cohort of 397 adults with 22q11.2DS (aged 17.6-76.3 years) with confirmed typical 22q11.2 microdeletion (overlapping the LCR22A to LCR22B region). We defined short stature as <3rd percentile using population norms. For the subset ( = 314, 79.1%) with 22q11.2 deletion extent, we used a binomial logistic regression model to predict short stature in 22q11.2DS, accounting for effects of sex, age, ancestry, major congenital heart disease (CHD), moderate-to-severe intellectual disability (ID), and 22q11.2 deletion extent. Adult height in 22q11.2DS showed a normal distribution but with a shift to the left, compared with population norms. Those with short stature represented 22.7% of the 22q11.2DS sample, 7.6-fold greater than population expectations ( < 0.0001). In the regression model, moderate-to-severe ID, major CHD, and the common LCR22A-LCR22D (A-D) deletion were significant independent risk factors for short stature while accounting for other factors (model = 0.0004). The results suggest that the 22q11.2 microdeletion has a significant effect on final adult height distribution, and on short stature with effects appearing to arise from reduced gene dosage involving both the proximal and distal sub-regions of the A-D region. Future studies involving larger sample sizes with proximal nested 22q11.2 deletions, longitudinal lifetime data, parental heights, and genotype data will be valuable.

Keywords

References

  1. Genet Soc Gen Psychol Monogr. 1991 Aug;117(3):313-57 [PMID: 1756951]
  2. Nature. 2017 Feb 9;542(7640):186-190 [PMID: 28146470]
  3. BMC Geriatr. 2016 Sep 29;16(1):167 [PMID: 27681526]
  4. Nat Commun. 2017 Sep 29;8(1):744 [PMID: 28963451]
  5. EClinicalMedicine. 2020 Sep 10;26:100528 [PMID: 33089125]
  6. Genet Med. 2021 May;23(5):813-815 [PMID: 33514815]
  7. Arch Argent Pediatr. 2019 Jun 1;117(3):e211-e217 [PMID: 31063303]
  8. J Neurodev Disord. 2015;7(1):18 [PMID: 26137170]
  9. Genet Med. 2015 Aug;17(8):599-609 [PMID: 25569435]
  10. Am J Med Genet A. 2005 Nov 1;138(4):307-13 [PMID: 16208694]
  11. Front Genet. 2021 May 21;12:669441 [PMID: 34093660]
  12. Rev Bras Cir Cardiovasc. 2014 Apr-Jun;29(2):241-8 [PMID: 25140475]
  13. Genet Med. 2020 Jan;22(1):132-141 [PMID: 31363180]
  14. Heart. 2008 Sep;94(9):1194-9 [PMID: 17646191]
  15. Nat Rev Dis Primers. 2015 Nov 19;1:15071 [PMID: 27189754]
  16. Genet Med. 2001 Jan-Feb;3(1):30-3 [PMID: 11339374]
  17. Am J Hum Genet. 2011 Dec 9;89(6):751-9 [PMID: 22118881]
  18. Psychol Med. 2021 Jan 14;:1-9 [PMID: 33443009]
  19. Am J Med Genet A. 2018 Oct;176(10):2172-2181 [PMID: 30289625]
  20. CMAJ Open. 2021 Aug 17;9(3):E802-E809 [PMID: 34404688]
  21. PLoS Genet. 2013;9(3):e1003365 [PMID: 23516380]
  22. Am J Psychol. 2009 Winter;122(4):527-36 [PMID: 20066931]
  23. Child Dev. 1985 Dec;56(6):1465-78 [PMID: 4075869]
  24. Am J Med Genet A. 2012 Nov;158A(11):2665-71 [PMID: 22711268]
  25. Eur J Hum Genet. 2014 May;22(5):602-9 [PMID: 24065112]
  26. J Pediatr. 2011 Aug;159(2):332-9.e1 [PMID: 21570089]
  27. Nature. 2022 Oct;610(7933):704-712 [PMID: 36224396]
  28. Mol Psychiatry. 2021 Aug;26(8):4496-4510 [PMID: 32015465]
  29. Nature. 2010 Oct 14;467(7317):832-8 [PMID: 20881960]
  30. Eur J Endocrinol. 2022 May 19;187(1):91-99 [PMID: 35521712]
  31. BMC Genomics. 2018 Dec 4;19(1):867 [PMID: 30509170]
  32. Mol Autism. 2021 Feb 10;12(1):12 [PMID: 33568206]

Grants

  1. MOP-313331/CIHR
  2. MOP-111238/CIHR

MeSH Term

Adult
Humans
Child
DiGeorge Syndrome
Intellectual Disability
Heart Defects, Congenital
Dwarfism
Gene Dosage

Word Cloud

Created with Highcharts 10.0.022q1122DSshortstaturedeletionadultheightpopulationsyndromefinalnormsmodelnumbergrowthstudiescomparedmicrodeletionregion=extentregressionaccountingeffectsmajorCHDmoderate-to-severeIDAdultdistributionsample0A-DsignificantfactorsinvolvingproximaldataDeletionmanifestswiderangemedicalconditionsacrosssystemsPediatricdeficiencycatch-upreportedaimedinvestigategeneralexaminepredictorscohort397adultsaged176-763yearsconfirmedtypicaloverlappingLCR22ALCR22Bdefined<3rdpercentileusingsubset314791%usedbinomiallogisticpredictsexageancestrycongenitalheartdiseaseintellectualdisabilityshowednormalshiftleftrepresented227%76-foldgreaterexpectations<0001commonLCR22A-LCR22Dindependentrisk0004resultssuggesteffectappearingarisereducedgenedosagedistalsub-regionsFuturelargersizesnesteddeletionslongitudinallifetimeparentalheightsgenotypewillvaluableHeightExtentShortStatureSyndromeDiGeorgephenotypecopyvariationquantitativetraitvelocardiofacial

Similar Articles

Cited By (2)