Genome-Wide Identification and Variation Analysis of Family Reveals Involved in the Resistance to in .

Lixia Li, Gaoxiang Ji, Wenjie Guan, Fang Qian, Hao Li, Guangqin Cai, Xiaoming Wu
Author Information
  1. Lixia Li: Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crop Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
  2. Gaoxiang Ji: Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crop Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
  3. Wenjie Guan: Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crop Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
  4. Fang Qian: Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crop Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
  5. Hao Li: Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crop Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
  6. Guangqin Cai: Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crop Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
  7. Xiaoming Wu: Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crop Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China.

Abstract

Clubroot caused by led to a significant decrease in the yield and quality of , one of the most important oil crops in the world. JAZ proteins are an essential repressor of jasmonates (JAs) signaling cascades, which have been reported to regulate the resistance to in . In this study, we identified 51, 25 and 26 JAZ proteins in , and , respectively. Phylogenetic analysis displayed that the notedJAZ proteins were divided into six groups. The JAZ proteins clustered in the same group shared a similar motif composition and distribution order. The 51 were not evenly assigned on seventeen chromosomes in , except for A04 and C07. The of the / group presented themselves to be significantly up-regulated after inoculation by . Variation analysis in a population with a specific resistance performance in displayed a 64 bp translocation in (, homologous to ) with an 8% reduction in the disease index on average. Through protein-protein interaction analysis, 65 genes were identified that might be involved in regulation of resistance to in , which provided new clues for understanding the resistance mechanism to .

Keywords

References

  1. Nat Genet. 2019 Jun;51(6):1052-1059 [PMID: 31152161]
  2. Plant Biotechnol J. 2021 Jan;19(1):192-205 [PMID: 32722872]
  3. BMC Genomics. 2017 Feb 13;18(1):152 [PMID: 28193162]
  4. Sci Rep. 2017 Jun 5;7(1):2788 [PMID: 28584307]
  5. Plant Cell. 2013 Feb;25(2):486-98 [PMID: 23386265]
  6. Methods. 2001 Dec;25(4):402-8 [PMID: 11846609]
  7. Biochem Biophys Res Commun. 2012 Sep 21;426(2):273-9 [PMID: 22943855]
  8. Nucleic Acids Res. 2004 Mar 19;32(5):1792-7 [PMID: 15034147]
  9. Plant Cell Physiol. 2019 Dec 1;60(12):2638-2647 [PMID: 31418777]
  10. Plant Physiol Biochem. 2019 Oct;143:329-339 [PMID: 31539762]
  11. Mol Biol Evol. 2018 Jun 1;35(6):1547-1549 [PMID: 29722887]
  12. Curr Opin Plant Biol. 2022 Jun;67:102197 [PMID: 35248983]
  13. Genes (Basel). 2020 Jan 24;11(2): [PMID: 31991606]
  14. Mol Plant Pathol. 2016 Feb;17(2):184-95 [PMID: 25893638]
  15. Plant J. 2008 Sep;55(6):979-88 [PMID: 18547396]
  16. Plant J. 2009 Jul;59(1):77-87 [PMID: 19309455]
  17. PLoS One. 2012;7(9):e44465 [PMID: 22984514]
  18. Plant J. 2015 May;82(4):669-79 [PMID: 25846245]
  19. Hortic Res. 2018 Aug 15;5:50 [PMID: 30131865]
  20. Plant Cell. 2011 Sep;23(9):3089-100 [PMID: 21963667]
  21. Int J Mol Sci. 2020 Mar 31;21(7): [PMID: 32244526]
  22. Science. 1998 May 15;280(5366):1091-4 [PMID: 9582125]
  23. Nature. 2010 Apr 1;464(7289):788-91 [PMID: 20360743]
  24. Genomics. 2011 Aug;98(2):128-36 [PMID: 21616136]
  25. Mol Plant Pathol. 2012 Jan;13(1):46-57 [PMID: 21726394]
  26. N Biotechnol. 2019 Jan 25;48:1-11 [PMID: 29017819]
  27. BMC Genomics. 2021 Apr 10;22(1):256 [PMID: 33838665]
  28. Plant Cell. 2007 Aug;19(8):2470-83 [PMID: 17675405]
  29. Genome Biol. 2021 Jan 5;22(1):13 [PMID: 33402202]
  30. Plant Mol Biol. 2009 Oct;71(3):291-305 [PMID: 19618278]
  31. Front Plant Sci. 2016 Sep 30;7:1483 [PMID: 27746804]
  32. Mol Plant. 2020 Aug 3;13(8):1194-1202 [PMID: 32585190]
  33. Nature. 2007 Aug 9;448(7154):661-5 [PMID: 17637677]
  34. Theor Appl Genet. 2020 Nov;133(11):3187-3199 [PMID: 32772134]
  35. Genome Biol. 2020 Oct 6;21(1):258 [PMID: 33023652]
  36. Plant Cell. 2009 Jan;21(1):131-45 [PMID: 19151223]
  37. Genome Biol. 2014 Jun 26;15(6):R84 [PMID: 24970577]
  38. Nat Genet. 2022 May;54(5):694-704 [PMID: 35484301]
  39. Bioinformatics. 2016 Apr 15;32(8):1220-2 [PMID: 26647377]
  40. Plant Cell Physiol. 2012 Dec;53(12):2060-72 [PMID: 23104764]
  41. BMC Genomics. 2020 Oct 22;21(1):736 [PMID: 33092535]
  42. Plant Physiol. 2016 Aug;171(4):2771-82 [PMID: 27268959]
  43. Curr Opin Plant Biol. 2008 Oct;11(5):486-94 [PMID: 18653378]
  44. Science. 2014 Aug 22;345(6199):950-3 [PMID: 25146293]
  45. Plant Cell Physiol. 2006 Mar;47(3):426-31 [PMID: 16381658]
  46. Plant Biotechnol J. 2021 Mar;19(3):412-414 [PMID: 33068485]
  47. Nat Commun. 2017 Jan 24;8:14061 [PMID: 28117401]
  48. Annu Rev Plant Biol. 2018 Apr 29;69:363-386 [PMID: 29166128]
  49. Nature. 2015 Sep 10;525(7568):269-73 [PMID: 26258305]
  50. Front Plant Sci. 2016 Feb 11;7:145 [PMID: 26904091]
  51. Front Plant Sci. 2021 Nov 19;12:685533 [PMID: 34868098]
  52. Plant J. 2015 Dec;84(5):937-48 [PMID: 26466558]
  53. Front Plant Sci. 2016 Jun 28;7:936 [PMID: 27446164]
  54. Cell. 2020 Jul 9;182(1):162-176.e13 [PMID: 32553274]
  55. Curr Genomics. 2019 Aug;20(5):371-388 [PMID: 32476994]
  56. Proc Natl Acad Sci U S A. 2006 Aug 1;103(31):11647-52 [PMID: 16868079]
  57. Mol Plant Pathol. 2019 Dec;20(12):1645-1661 [PMID: 31603283]
  58. Plant Cell Rep. 2013 Feb;32(2):263-72 [PMID: 23090726]
  59. Front Genet. 2020 Jan 17;10:1275 [PMID: 32010176]
  60. Plant Sci. 2015 Mar;232:1-12 [PMID: 25617318]
  61. New Phytol. 2017 Feb;213(3):1378-1392 [PMID: 28005270]

Grants

  1. 32001892, 32122063/National Natural Science Foundation of China
  2. CARS-12/China Agriculture Research System
  3. CAAS-ASTIP, CAAS-ZDRW202105/Agricultural Science and Technology Innovation Project of Chinese Academy of Agricultural Sciences

MeSH Term

Plasmodiophorida
Brassica napus
Disease Resistance
Phylogeny
Plant Diseases

Word Cloud

Created with Highcharts 10.0.0JAZproteinsresistanceanalysisidentified51displayedgroupVariationClubrootcausedledsignificantdecreaseyieldqualityoneimportantoilcropsworldessentialrepressorjasmonatesJAssignalingcascadesreportedregulatestudy2526respectivelyPhylogeneticnotedJAZdividedsixgroupsclusteredsharedsimilarmotifcompositiondistributionorderevenlyassignedseventeenchromosomesexceptA04C07/presentedsignificantlyup-regulatedinoculationpopulationspecificperformance64bptranslocationhomologous8%reductiondiseaseindexaverageprotein-proteininteraction65genesmightinvolvedregulationprovidednewcluesunderstandingmechanismGenome-WideIdentificationAnalysisFamilyRevealsInvolvedResistanceBrassicanapusPlasmodiophorabrassicaephylogeneticstructuralvariation

Similar Articles

Cited By

No available data.