The Effect of Proline on the Freeze-Drying Survival Rate of CCFM 1029 and Its Inherent Mechanism.

Shumao Cui, Wenrui Zhou, Xin Tang, Qiuxiang Zhang, Bo Yang, Jianxin Zhao, Bingyong Mao, Hao Zhang
Author Information
  1. Shumao Cui: State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
  2. Wenrui Zhou: State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
  3. Xin Tang: State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
  4. Qiuxiang Zhang: State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China. ORCID
  5. Bo Yang: State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China. ORCID
  6. Jianxin Zhao: State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
  7. Bingyong Mao: State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
  8. Hao Zhang: State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.

Abstract

Amino acids, which are important compatible solutes, play a significant role in probiotic lyophilization. However, studies on the functions of during freeze-drying are limited. Therefore, in this study, we compared the freeze-drying survival rate of CCFM 1029 cultivated in different media containing different kinds of compatible solutes. We found that the addition of 21 g/L proline to the culture media substantially improved the freeze-drying survival rate of CCFM 1029 from 18.61 ± 0.42% to 38.74 ± 1.58%. Interestingly, this change has only been observed when the osmotic pressure of the external culture environment is increased. Under these conditions, we found that proline accumulation in this strain increased significantly. This change also helped the strain to maintain its membrane integrity and the activity of some key enzymes during freeze-drying. Overall, these results show that the addition of proline can help the strain resist a tough environment during lyophilization. The findings of this study provide preliminary data for producers of probiotics who wish to achieve higher freeze-drying survival rates during industrial production.

Keywords

References

  1. Biochemistry. 2002 Nov 19;41(46):13473-82 [PMID: 12427007]
  2. J Bacteriol. 1996 Sep;178(18):5370-81 [PMID: 8808924]
  3. Biochim Biophys Acta. 2006 Jul;1764(7):1234-42 [PMID: 16797260]
  4. J Microbiol Biotechnol. 2013 Nov 28;23(11):1560-8 [PMID: 23966021]
  5. Gut Microbes. 2022 Jan-Dec;14(1):2044723 [PMID: 35239463]
  6. Biochemistry. 2015 Sep 22;54(37):5735-47 [PMID: 26325238]
  7. J Bacteriol. 1989 Apr;171(4):1915-22 [PMID: 2649478]
  8. Nutrients. 2019 Apr 19;11(4): [PMID: 31010241]
  9. J Bacteriol. 2011 Oct;193(19):5335-46 [PMID: 21784929]
  10. J Microbiol. 2020 Jun;58(6):519-529 [PMID: 32462489]
  11. Gut Microbes. 2020 Nov 9;12(1):1782156 [PMID: 32584650]
  12. J Gen Microbiol. 1987 Jul;133(7):1851-60 [PMID: 3312483]
  13. Int J Food Microbiol. 2003 Jul 15;84(1):13-20 [PMID: 12781949]
  14. J Biol Chem. 1995 Jul 14;270(28):16701-13 [PMID: 7622480]
  15. Microbiology (Reading). 1997 Sep;143 ( Pt 9):2903-2911 [PMID: 9308174]
  16. Appl Environ Microbiol. 2003 Feb;69(2):917-25 [PMID: 12571012]
  17. J Mol Biol. 2008 Oct 17;382(4):884-93 [PMID: 18692508]
  18. Bioinformatics. 2007 Mar 15;23(6):673-9 [PMID: 17237039]
  19. Biochemistry. 1995 Oct 3;34(39):12884-91 [PMID: 7548045]
  20. J Bacteriol. 1935 Jun;29(6):609-34 [PMID: 16559814]
  21. J Gen Microbiol. 1990 Dec;136(12):2527-35 [PMID: 2127802]
  22. Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W451-4 [PMID: 15980510]
  23. J Biotechnol. 2018 Nov 20;286:27-35 [PMID: 30218678]
  24. Nucleic Acids Res. 2000 Jan 1;28(1):45-8 [PMID: 10592178]
  25. J Bacteriol. 1984 Oct;160(1):22-7 [PMID: 6090414]
  26. Arch Microbiol. 1998 Oct;170(5):319-30 [PMID: 9818351]
  27. Nucleic Acids Res. 1994 Sep;22(17):3574-7 [PMID: 7937061]
  28. Folia Microbiol (Praha). 2020 Dec;65(6):1039-1050 [PMID: 32852726]
  29. Front Microbiol. 2018 Feb 15;9:108 [PMID: 29497403]
  30. J Dairy Sci. 1997 Sep;80(9):1955-8 [PMID: 9313134]
  31. Nucleic Acids Res. 2016 Jul 8;44(W1):W54-7 [PMID: 27174935]
  32. Nucleic Acids Res. 2000 Jan 1;28(1):27-30 [PMID: 10592173]
  33. Mol Microbiol. 1997 Jul;25(1):175-87 [PMID: 11902719]
  34. J Biotechnol. 2012 Jun 30;159(4):351-7 [PMID: 21723344]
  35. J Mol Microbiol Biotechnol. 2005;10(2-4):76-91 [PMID: 16645306]
  36. Biochim Biophys Acta. 2004 Nov 3;1666(1-2):88-104 [PMID: 15519310]
  37. Biophys J. 1985 Mar;47(3):411-4 [PMID: 3978211]

Grants

  1. 2021YFD2100700/National Key R&D Program of China
  2. 32172173, 32072197, 31972086/National Natural Science Foundation of China

MeSH Term

Bifidobacterium longum
Survival Rate
Proline
Freeze Drying
Bifidobacterium
Probiotics

Chemicals

Proline

Word Cloud

Created with Highcharts 10.0.0freeze-dryingsurvivalCCFM1029prolineratestraincompatiblesoluteslyophilizationstudydifferentmediafoundadditionculture±changeenvironmentincreasedAminoacidsimportantplaysignificantroleprobioticHoweverstudiesfunctionslimitedThereforecomparedcultivatedcontainingkinds21g/Lsubstantiallyimproved1861042%3874158%InterestinglyobservedosmoticpressureexternalconditionsaccumulationsignificantlyalsohelpedmaintainmembraneintegrityactivitykeyenzymesOverallresultsshowcanhelpresisttoughfindingsprovidepreliminarydataproducersprobioticswishachievehigherratesindustrialproductionEffectProlineFreeze-DryingSurvivalRateInherentMechanismBifidobacteriumlongummechanism

Similar Articles

Cited By