Predictive Models of Gas/Particulate Partition Coefficients () for Polycyclic Aromatic Hydrocarbons and Their Oxygen/Nitrogen Derivatives.

Qiang Wu, Siqi Cao, Zhenyi Chen, Xiaoxuan Wei, Guangcai Ma, Haiying Yu
Author Information
  1. Qiang Wu: College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, Jinhua 321004, China.
  2. Siqi Cao: College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, Jinhua 321004, China.
  3. Zhenyi Chen: College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, Jinhua 321004, China.
  4. Xiaoxuan Wei: College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, Jinhua 321004, China. ORCID
  5. Guangcai Ma: College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, Jinhua 321004, China. ORCID
  6. Haiying Yu: College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, Jinhua 321004, China. ORCID

Abstract

Polycyclic Aromatic Hydrocarbons (PAHs) and their Oxygen/Nitrogen derivatives released into the atmosphere can alternate between a gas phase and a particulate phase, further affecting their environmental behavior and fate. The gas/particulate partition coefficient (KP) is generally used to characterize such partitioning equilibrium. In this study, the correlation between log KP of fifty PAH derivatives and their n-octanol/air partition coefficient (log KOA) was first analyzed, yielding a strong linear correlation (R2 = 0.801). Then, Gaussian 09 software was used to calculate quantum chemical descriptors of all chemicals at M062X/6-311+G (d,p) level. Both stepwise multiple linear regression (MLR) and support vector machine (SVM) methods were used to develop the quantitative structure-property relationship (QSPR) prediction models of log KP. They yield better statistical performance (R2 > 0.847, RMSE < 0.584) than the log KOA model. Simulation external validation and cross validation were further used to characterize the fitting performance, predictive ability, and robustness of the models. The mechanism analysis shows intermolecular dispersion interaction and hydrogen bonding as the main factors to dominate the distribution of PAH derivatives between the gas phase and particulate phase. The developed models can be used to predict log KP values of other PAH derivatives in the application domain, providing basic data for their ecological risk assessment.

Keywords

References

  1. Environ Sci Technol. 2005 Feb 15;39(4):913-24 [PMID: 15773462]
  2. Environ Pollut. 2016 Dec;219:742-749 [PMID: 27461752]
  3. J Chem Inf Model. 2017 Jan 23;57(1):36-49 [PMID: 28006899]
  4. Sci Total Environ. 2014 May 15;481:178-85 [PMID: 24598148]
  5. Sci Total Environ. 2020 Jan 1;698:134229 [PMID: 31505341]
  6. Environ Pollut. 2015 Feb;197:156-164 [PMID: 25528449]
  7. Sci Total Environ. 2022 Oct 6;856(Pt 2):159273 [PMID: 36209887]
  8. Sci Total Environ. 2016 Oct 1;566-567:1131-1142 [PMID: 27312273]
  9. Nature. 2014 Oct 9;514(7521):218-22 [PMID: 25231863]
  10. Sci Total Environ. 2020 Mar 1;706:135691 [PMID: 31784180]
  11. Sci Total Environ. 2021 Sep 20;788:147738 [PMID: 34023603]
  12. Environ Health. 2019 Aug 22;18(1):74 [PMID: 31439044]
  13. Chemosphere. 2022 Jun;296:133948 [PMID: 35151703]
  14. Ecotoxicol Environ Saf. 2022 Oct 15;245:114111 [PMID: 36155337]
  15. Sci Total Environ. 2007 Oct 1;384(1-3):280-92 [PMID: 17590415]
  16. Sci Rep. 2020 Sep 3;10(1):14597 [PMID: 32883986]
  17. Environ Sci Technol. 2001 Jan 1;35(1):1-9 [PMID: 11351988]
  18. Sci Total Environ. 2015 Feb 1;505:814-22 [PMID: 25461084]
  19. Risk Anal. 2001 Apr;21(2):275-94 [PMID: 11414537]
  20. Environ Sci Technol. 2014 May 6;48(9):5051-7 [PMID: 24689775]
  21. Environ Toxicol Chem. 2014 Aug;33(8):1792-801 [PMID: 24764175]
  22. Environ Int. 2019 Feb;123:543-557 [PMID: 30622079]
  23. Chemosphere. 2008 Aug;72(10):1567-1572 [PMID: 18547606]
  24. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 2002 Nov;20(2):149-83 [PMID: 12515673]
  25. Molecules. 2019 May 08;24(9): [PMID: 31072022]
  26. Mutat Res. 1996 Dec 20;371(3-4):123-57 [PMID: 9008716]
  27. Mar Pollut Bull. 2017 Jun 30;119(2):231-238 [PMID: 28457555]
  28. Environ Int. 2013 Oct;60:71-80 [PMID: 24013021]
  29. Chemosphere. 2017 Jul;178:301-308 [PMID: 28334670]

Grants

  1. 21677133; 22176177/National Natural Science Foundation of China
  2. LY22B070002/Natural Science Foundation of Zhejiang Province

MeSH Term

Polycyclic Aromatic Hydrocarbons
Nitrogen
Oxygen
Atmosphere
1-Octanol
Dust

Chemicals

Polycyclic Aromatic Hydrocarbons
Nitrogen
Oxygen
1-Octanol
Dust

Word Cloud

Created with Highcharts 10.0.0derivativesKPusedlogphasepartitioncoefficientPAHlinear0modelsPolycyclicPAHsoxygen/nitrogencangasparticulategas/particulatecharacterizecorrelationKOAR2multipleregressionMLRsupportvectormachineSVMquantitativeQSPRperformancevalidationaromatichydrocarbonsreleasedatmospherealternateaffectingenvironmentalbehaviorfategenerallypartitioningequilibriumstudyfiftyn-octanol/airfirstanalyzedyieldingstrong=801Gaussian09softwarecalculatequantumchemicaldescriptorschemicalsM062X/6-311+Gdplevelstepwisemethodsdevelopstructure-propertyrelationshippredictionyieldbetterstatistical>847RMSE<584modelSimulationexternalcrossfittingpredictiveabilityrobustnessmechanismanalysisshowsintermoleculardispersioninteractionhydrogenbondingmainfactorsdominatedistributiondevelopedpredictvaluesapplicationdomainprovidingbasicdataecologicalriskassessmentPredictiveModelsGas/ParticulatePartitionCoefficientsAromaticHydrocarbonsOxygen/NitrogenDerivativesstructure-activityrelationships

Similar Articles

Cited By

No available data.