Time Course RNA-seq Reveals Soybean Responses against Root-Lesion Nematode and Resistance Players.

Valéria Stefania Lopes-Caitar, Rafael Bruno Guayato Nomura, Suellen Mika Hishinuma-Silva, Mayra Costa da Cruz Gallo de Carvalho, Ricardo Vilela Abdelnoor, Waldir Pereira Dias, Francismar Corrêa Marcelino-Guimarães
Author Information
  1. Valéria Stefania Lopes-Caitar: Department of Biological Sciences, Universidade Estadual de Londrina (UEL), Londrina 86057-970, PR, Brazil.
  2. Rafael Bruno Guayato Nomura: Brazilian Agricultural Research Corporation-Embrapa Soja, Londrina 86001-970, PR, Brazil.
  3. Suellen Mika Hishinuma-Silva: Brazilian Agricultural Research Corporation-Embrapa Soja, Londrina 86001-970, PR, Brazil.
  4. Mayra Costa da Cruz Gallo de Carvalho: Department of Biological Sciences, Universidade Estadual do Norte do Paraná (UENP), Bandeirantes 86360-000, PR, Brazil.
  5. Ricardo Vilela Abdelnoor: Brazilian Agricultural Research Corporation-Embrapa Soja, Londrina 86001-970, PR, Brazil.
  6. Waldir Pereira Dias: Brazilian Agricultural Research Corporation-Embrapa Soja, Londrina 86001-970, PR, Brazil.
  7. Francismar Corrêa Marcelino-Guimarães: Brazilian Agricultural Research Corporation-Embrapa Soja, Londrina 86001-970, PR, Brazil. ORCID

Abstract

causes serious damage to Soybean production and other crops worldwide. Plant molecular responses to RLN infection remain largely unknown and no resistance genes have been identified in Soybean. In this study, we analyzed molecular responses to RLN infection in moderately resistant BRSGO (Chapadões-BRS) and susceptible TMG115 RR (TMG) genotypes. Differential expression analysis revealed two stages of response to RLN infection and a set of differentially expressed genes (DEGs) in the first stage suggested a pattern-triggered immunity (PTI) in both genotypes. The divergent time-point of DEGs between genotypes was observed four days post-infection, which included the activation of mitogen-activated protein kinase (MAPK) and plant-pathogen interaction genes in the BRS, suggesting the occurrence of an effector-triggered immunity response (ETI) in BRS. The co-expression analyses combined with single nucleotide polymorphism (SNP) uncovered a key element, a transcription factor phytochrome-interacting factor (PIF7) that is a potential regulator of moderate resistance to RLN infection. Two genes for resistance-related leucine-rich repeat (LRR) proteins were found as BRS-specific expressed genes. In addition, alternative splicing analysis revealed an intron retention in a myo-inositol oxygenase (MIOX) transcript, a gene related to susceptibility, may cause a loss of function in BRS.

Keywords

References

  1. Antibiotics (Basel). 2020 Jun 18;9(6): [PMID: 32570824]
  2. J Exp Bot. 2021 Mar 29;72(7):2727-2740 [PMID: 33475698]
  3. Sci Rep. 2016 Sep 12;6:33199 [PMID: 27616653]
  4. Nucleic Acids Res. 2010 Jul;38(Web Server issue):W64-70 [PMID: 20435677]
  5. Genome Res. 2012 Jun;22(6):1184-95 [PMID: 22391557]
  6. Plant Mol Biol. 2021 Jul;106(4-5):381-406 [PMID: 33973100]
  7. Nature. 2021 Apr;592(7852):110-115 [PMID: 33692545]
  8. Plant Physiol. 2011 Jun;156(2):779-92 [PMID: 21482634]
  9. Front Plant Sci. 2019 Jul 31;10:971 [PMID: 31417588]
  10. Theor Appl Genet. 2002 Apr;104(5):874-879 [PMID: 12582649]
  11. Genome Biol. 2004;5(7):R48 [PMID: 15239833]
  12. Mol Genet Genomics. 2006 May;275(5):504-11 [PMID: 16496176]
  13. Bioinformatics. 2004 Jun 12;20(9):1453-4 [PMID: 14871861]
  14. Mol Plant Microbe Interact. 2018 Apr;31(4):403-409 [PMID: 29135338]
  15. Hortic Res. 2019 Nov 8;6:121 [PMID: 31728196]
  16. Mol Plant Pathol. 2013 Dec;14(9):946-61 [PMID: 23809086]
  17. New Phytol. 2012 Nov;196(3):887-900 [PMID: 22985291]
  18. Plant Physiol Biochem. 2008 Nov;46(11):941-50 [PMID: 18674922]
  19. BMC Genomics. 2016 Aug 12;17(1):627 [PMID: 27520023]
  20. Plant Pathol J. 2020 Dec 1;36(6):515-535 [PMID: 33312089]
  21. Plant Biol (Stuttg). 2012 Mar;14 Suppl 1:73-82 [PMID: 22188265]
  22. Nature. 2010 Jan 14;463(7278):178-83 [PMID: 20075913]
  23. Front Plant Sci. 2017 Oct 04;8:1699 [PMID: 29046680]
  24. Plant Physiol. 2016 Jan;170(1):586-99 [PMID: 26582726]
  25. Front Plant Sci. 2021 Jul 12;12:675760 [PMID: 34322142]
  26. Plant Physiol. 2010 Oct;154(2):453-7 [PMID: 20921162]
  27. Bioinformatics. 2014 Aug 1;30(15):2114-20 [PMID: 24695404]
  28. Curr Opin Plant Biol. 2021 Aug;62:102030 [PMID: 33684883]
  29. J Exp Bot. 2007;58(15-16):4019-26 [PMID: 18182420]
  30. Nucleic Acids Res. 2011 Jul;39(Web Server issue):W316-22 [PMID: 21715386]
  31. Plant Signal Behav. 2013 Jul;8(7):e24798 [PMID: 23656869]
  32. Plant Mol Biol. 2012 Jan 31;: [PMID: 22290409]
  33. PLoS One. 2018 Oct 17;13(10):e0205705 [PMID: 30332458]
  34. New Phytol. 2014 Jan;201(2):476-485 [PMID: 24117492]
  35. Nucleic Acids Res. 2015 Jul 1;43(W1):W39-49 [PMID: 25953851]
  36. BMC Plant Biol. 2013 Dec 31;13:230 [PMID: 24377498]
  37. Plant J. 2004 Apr;38(2):285-97 [PMID: 15078331]
  38. New Phytol. 2019 Mar;221(4):2160-2175 [PMID: 30300945]
  39. Plant Physiol. 2006 Jun;141(2):373-8 [PMID: 16760490]
  40. Annu Rev Phytopathol. 2004;42:83-105 [PMID: 15283661]
  41. Theor Appl Genet. 2006 Feb;112(4):770-7 [PMID: 16362274]
  42. Front Plant Sci. 2017 Nov 20;8:1979 [PMID: 29209344]
  43. Annu Rev Phytopathol. 2014;52:135-53 [PMID: 24906129]
  44. Plant Mol Biol. 1998 Dec;38(6):999-1010 [PMID: 9869406]
  45. Theor Appl Genet. 2020 Feb;133(2):635-652 [PMID: 31813000]
  46. Annu Rev Phytopathol. 2018 Aug 25;56:381-403 [PMID: 29958072]
  47. Front Plant Sci. 2017 Sep 29;8:1687 [PMID: 29033963]
  48. Sci Rep. 2017 Aug 29;7(1):9699 [PMID: 28852059]
  49. Biomolecules. 2018 Mar 26;8(2): [PMID: 29587455]
  50. Sci Rep. 2021 Sep 1;11(1):17491 [PMID: 34471168]
  51. BMC Plant Biol. 2014 Apr 17;14:100 [PMID: 24742262]
  52. Plant Cell. 2004 Jul;16(7):1938-50 [PMID: 15208388]
  53. Bioinformatics. 2012 Nov 1;28(21):2782-8 [PMID: 22923299]
  54. J Integr Plant Biol. 2010 Apr;52(4):360-76 [PMID: 20377698]
  55. Plant Sci. 2015 Feb;231:74-81 [PMID: 25575993]
  56. Plant Cell Environ. 2021 Sep;44(9):3122-3139 [PMID: 34053100]
  57. Plant Cell. 2013 Oct;25(10):3640-56 [PMID: 24179132]
  58. Mol Plant Microbe Interact. 2009 Feb;22(2):157-65 [PMID: 19132868]
  59. Theor Appl Genet. 2014 Jun;127(6):1409-21 [PMID: 24748126]
  60. Plant Cell Environ. 2021 Jul;44(7):2018-2033 [PMID: 33314270]
  61. Int J Mol Sci. 2015 Sep 11;16(9):21989-2007 [PMID: 26378527]
  62. Nucleic Acids Res. 2021 Jan 8;49(D1):D605-D612 [PMID: 33237311]
  63. Methods Mol Biol. 2017;1578:143-153 [PMID: 28220421]
  64. Bioinformatics. 2013 Jan 1;29(1):15-21 [PMID: 23104886]
  65. J Exp Bot. 2007;58(12):3351-60 [PMID: 17977849]
  66. Phytopathology. 2019 Apr;109(4):615-622 [PMID: 30256187]
  67. Cell. 2016 Sep 8;166(6):1598 [PMID: 27610578]
  68. Virus Evol. 2020 Mar 18;6(1):veaa019 [PMID: 32211198]
  69. Front Plant Sci. 2020 Nov 13;11:602079 [PMID: 33281858]
  70. Phytopathology. 2014 Feb;104(2):174-87 [PMID: 24047251]
  71. Nature. 2006 Nov 16;444(7117):323-9 [PMID: 17108957]
  72. Genome Biol. 2016 Jan 26;17:13 [PMID: 26813401]
  73. Genome Res. 2010 Jan;20(1):45-58 [PMID: 19858364]
  74. Biology (Basel). 2021 Apr 08;10(4): [PMID: 33917813]
  75. Plant Signal Behav. 2009 Jul;4(7):610-3 [PMID: 19820330]
  76. ISME J. 2021 Jul;15(7):2146-2157 [PMID: 33603148]
  77. Plant Physiol. 2013 Jul;162(3):1459-72 [PMID: 23735504]
  78. Int J Mol Sci. 2018 Nov 24;19(12): [PMID: 30477211]
  79. J Exp Bot. 2006;57(3):547-57 [PMID: 16377736]
  80. Proc Natl Acad Sci U S A. 2014 Dec 23;111(51):E5593-601 [PMID: 25480548]
  81. Int J Mol Sci. 2021 Feb 01;22(3): [PMID: 33535511]
  82. Genome Biol. 2007;8(2):R24 [PMID: 17324271]
  83. Bioinformatics. 2019 Jun 1;35(11):1960-1962 [PMID: 30379987]
  84. BMC Genomics. 2019 Feb 27;20(1):160 [PMID: 30813897]
  85. Trends Plant Sci. 2018 Feb;23(2):140-150 [PMID: 29074233]
  86. Plant Physiol. 2011 Apr;155(4):1960-75 [PMID: 21335526]
  87. Front Plant Sci. 2019 Oct 23;10:1257 [PMID: 31708937]
  88. Nucleic Acids Res. 2017 Jul 3;45(W1):W122-W129 [PMID: 28472432]

Word Cloud

Created with Highcharts 10.0.0genesinfectionRLNsoybeanmolecularresistancegenotypesBRSresponsesanalysisrevealedresponseexpressedDEGsimmunityfactorcausesseriousdamageproductioncropsworldwidePlantremainlargelyunknownidentifiedstudyanalyzedmoderatelyresistantBRSGOChapadões-BRSsusceptibleTMG115RRTMGDifferentialexpressiontwostagessetdifferentiallyfirststagesuggestedpattern-triggeredPTIdivergenttime-pointobservedfourdayspost-infectionincludedactivationmitogen-activatedproteinkinaseMAPKplant-pathogeninteractionsuggestingoccurrenceeffector-triggeredETIco-expressionanalysescombinedsinglenucleotidepolymorphismSNPuncoveredkeyelementtranscriptionphytochrome-interactingPIF7potentialregulatormoderateTworesistance-relatedleucine-richrepeatLRRproteinsfoundBRS-specificadditionalternativesplicingintronretentionmyo-inositoloxygenaseMIOXtranscriptgenerelatedsusceptibilitymaycauselossfunctionTimeCourseRNA-seqRevealsSoybeanResponsesRoot-LesionNematodeResistancePlayersmigratorynematodebasishostdefensereferencePbrachyurustranscriptomedifferentperspectives

Similar Articles

Cited By