Ecosystem-level effects of re-oligotrophication and N:P imbalances in rivers and estuaries on a global scale.

Carles Ibáñez, Nuno Caiola, José Barquín, Oscar Belmar, Xavier Benito-Granell, Frederic Casals, Siobhan Fennessy, Jocelyne Hughes, Margaret Palmer, Josep Peñuelas, Estela Romero, Jordi Sardans, Michael Williams
Author Information
  1. Carles Ibáñez: Department of Climate Change, Area of Sustainability, EURECAT, Technological Centre of Catalonia, Amposta, Spain. ORCID
  2. Nuno Caiola: Department of Climate Change, Area of Sustainability, EURECAT, Technological Centre of Catalonia, Amposta, Spain. ORCID
  3. José Barquín: IHCantabria, Instituto de Hidráulica Ambiental, Universidad de Cantabria, Santander, Spain. ORCID
  4. Oscar Belmar: IRTA, Program of Marine & Continental Waters, La Ràpita, Spain. ORCID
  5. Xavier Benito-Granell: National Socio-Environmental Synthesis Center (SESYNC), University of Maryland, Annapolis, Maryland, USA. ORCID
  6. Frederic Casals: Department of Animal Science, University of Lleida, Lleida, Spain. ORCID
  7. Siobhan Fennessy: National Socio-Environmental Synthesis Center (SESYNC), University of Maryland, Annapolis, Maryland, USA. ORCID
  8. Jocelyne Hughes: School of Geography and the Environment, University of Oxford, Oxford, UK. ORCID
  9. Margaret Palmer: National Socio-Environmental Synthesis Center (SESYNC), University of Maryland, Annapolis, Maryland, USA. ORCID
  10. Josep Peñuelas: Global Ecology Unit, CREAF-CSIC-UAB, Universitat Autònoma de Barcelona, Bellaterra, Spain. ORCID
  11. Estela Romero: Global Ecology Unit, CREAF-CSIC-UAB, Universitat Autònoma de Barcelona, Bellaterra, Spain. ORCID
  12. Jordi Sardans: Global Ecology Unit, CREAF-CSIC-UAB, Universitat Autònoma de Barcelona, Bellaterra, Spain. ORCID
  13. Michael Williams: Chesapeake Biological Laboratory, University of Maryland Center for Environmental Science, Solomons, Maryland, USA.

Abstract

Trends and ecological consequences of phosphorus (P) decline and increasing nitrogen (N) to phosphorus (N:P) ratios in rivers and estuaries are reviewed and discussed. Results suggest that re-oligotrophication is a dominant trend in rivers and estuaries of high-income countries in the last two-three decades, while in low-income countries widespread eutrophication occurs. The decline in P is well documented in hundreds of rivers of United States and the European Union, but the biotic response of rivers and estuaries besides phytoplankton decline such as trends in phytoplankton composition, changes in primary production, ecosystem shifts, cascading effects, changes in ecosystem metabolism, etc., have not been sufficiently monitored and investigated, neither the effects of N:P imbalance. N:P imbalance has significant ecological effects that need to be further investigated. There is a growing number of cases in which phytoplankton biomass have been shown to decrease due to re-oligotrophication, but the potential regime shift from phytoplankton to macrophyte dominance described in shallow lakes has been documented only in a few rivers and estuaries yet. The main reasons why regime shifts are rarely described in rivers and estuaries are, from one hand the scarcity of data on macrophyte cover trends, and from the other hand physical factors such as peak flows or high turbidity that could prevent a general spread of submerged macrophytes as observed in shallow lakes. Moreover, re-oligotrophication effects on rivers may be different compared to lakes (e.g., lower dominance of macrophytes) or estuaries (e.g., limitation of primary production by N instead of P) or may be dependent on river/estuary type. We conclude that river and estuary re-oligotrophication effects are complex, diverse and still little known, and in some cases are equivalent to those described in shallow lakes, but the regime shift is more likely to occur in mid to high-order rivers and shallow estuaries.

Keywords

References

  1. Sci Total Environ. 2019 Feb 20;652:134-146 [PMID: 30359797]
  2. J Am Water Resour Assoc. 2017 Jan 2;53(1):197-219 [PMID: 30271111]
  3. Nat Commun. 2013;4:2934 [PMID: 24343268]
  4. Proc Natl Acad Sci U S A. 2019 Oct 8;116(41):20562-20567 [PMID: 31548416]
  5. Environ Manage. 2006 Aug;38(2):163-78 [PMID: 16788855]
  6. J Environ Qual. 2020 Jul;49(4):812-834 [PMID: 33016477]
  7. Proc Natl Acad Sci U S A. 2015 Dec 22;112(51):15603-8 [PMID: 26644553]
  8. Proc Biol Sci. 2012 Nov 7;279(1746):4322-33 [PMID: 22915669]
  9. Sci Total Environ. 2006 Jul 15;365(1-3):84-104 [PMID: 16626783]
  10. Proc Natl Acad Sci U S A. 2020 May 26;117(21):11566-11572 [PMID: 32385161]
  11. Am Nat. 2004 Aug;164(2):255-66 [PMID: 15278848]
  12. Sci Total Environ. 2012 Feb 1;416:314-22 [PMID: 22178026]
  13. Sci Total Environ. 2019 Mar 15;656:1108-1120 [PMID: 30625643]
  14. Ambio. 2014;43 Suppl 1:104-12 [PMID: 25403973]
  15. Proc Natl Acad Sci U S A. 2010 Sep 21;107(38):16566-70 [PMID: 20823243]
  16. Front Microbiol. 2017 May 30;8:949 [PMID: 28611750]
  17. Oecologia. 2015 Mar;177(3):875-883 [PMID: 25430043]
  18. Environ Sci Technol. 2013;47(21):12193-200 [PMID: 24090248]
  19. Estuar Coast Shelf Sci. 2018;212:11-22 [PMID: 30220765]
  20. Sci Total Environ. 2021 Feb 20;756:144074 [PMID: 33303198]
  21. Science. 2019 Aug 16;365(6454):637-638 [PMID: 31416947]
  22. Sci Total Environ. 2011 Aug 15;409(18):3418-30 [PMID: 21624642]
  23. Ecol Lett. 2016 Oct;19(10):1237-46 [PMID: 27501082]
  24. Sci Total Environ. 2012 Dec 1;440:132-9 [PMID: 22939413]
  25. Proc Natl Acad Sci U S A. 2018 Apr 3;115(14):3658-3662 [PMID: 29507225]
  26. Glob Chang Biol. 2023 Mar;29(5):1248-1266 [PMID: 36366939]
  27. Mar Environ Res. 2011 Apr;71(3):178-88 [PMID: 21316754]
  28. Environ Evid. 2017;6(18):1-13 [PMID: 31019679]
  29. Trends Ecol Evol. 1993 Aug;8(8):275-9 [PMID: 21236168]
  30. Environ Sci Technol. 2020 Apr 7;54(7):4336-4343 [PMID: 32216285]
  31. Science. 2012 Jun 15;336(6087):1393-4 [PMID: 22700910]
  32. Environ Monit Assess. 2014 Mar;186(3):1939-50 [PMID: 24197562]
  33. Ecol Appl. 2011 Sep;21(6):1989-2006 [PMID: 21939039]
  34. Biol Rev Camb Philos Soc. 2020 Dec 17;: [PMID: 33350055]
  35. Sci Total Environ. 2018 Feb 1;613-614:1510-1526 [PMID: 28886914]
  36. Nature. 2019 May;569(7755):215-221 [PMID: 31068722]
  37. Sci Total Environ. 2012 Dec 15;441:220-9 [PMID: 23137988]
  38. Science. 2019 Sep 20;365(6459): [PMID: 31604208]
  39. Environ Monit Assess. 2016 Aug;188(8):454 [PMID: 27393194]
  40. Environ Sci Technol. 2016 Apr 5;50(7):3409-15 [PMID: 26914108]
  41. Ecol Lett. 2014 Aug;17(8):951-60 [PMID: 24813339]
  42. Environ Sci Technol. 2014 Jun 17;48(12):6671-7 [PMID: 24850565]
  43. Sci Data. 2019 Dec 9;6(1):283 [PMID: 31819059]
  44. Ecol Lett. 2007 Dec;10(12):1135-42 [PMID: 17922835]
  45. Sci Total Environ. 2016 Sep 15;565:1044-1053 [PMID: 27261425]
  46. Science. 2009 Nov 6;326(5954):835-7 [PMID: 19892979]
  47. Nat Commun. 2012;3:1118 [PMID: 23047676]
  48. Sci Total Environ. 2019 Mar 1;654:1225-1240 [PMID: 30841397]
  49. Mar Environ Res. 2016 Jun;117:21-31 [PMID: 27062106]
  50. Philos Trans R Soc Lond B Biol Sci. 2002 May 29;357(1421):635-45 [PMID: 12079525]
  51. Sci Total Environ. 2019 Feb 15;651(Pt 1):1-11 [PMID: 30223216]
  52. Environ Sci Technol. 2011 Apr 15;45(8):3297-303 [PMID: 21417221]
  53. Science. 2018 Dec 21;362(6421):1379-1383 [PMID: 30573623]

Grants

  1. DBI-1639145/U.S. National Science Foundation
  2. AquaSCI-2022/Generalitat de Catalunya

MeSH Term

Ecosystem
Rivers
Estuaries
Biomass
Phytoplankton
Lakes
Eutrophication
Phosphorus

Chemicals

Phosphorus

Word Cloud

Created with Highcharts 10.0.0riversestuarieseffectsre-oligotrophicationN:PphytoplanktonshallowlakesphosphorusPdeclineprimaryecosystemregimeshiftdescribedecologicalNcountriesdocumentedtrendschangesproductionshiftscascadinginvestigatedimbalancecasesmacrophytedominancehandmacrophytesmayegTrendsconsequencesincreasingnitrogenratiosrevieweddiscussedResultssuggestdominanttrendhigh-incomelasttwo-threedecadeslow-incomewidespreadeutrophicationoccurswellhundredsUnitedStatesEuropeanUnionbioticresponsebesidescompositionmetabolismetcsufficientlymonitoredneithersignificantneedgrowingnumberbiomassshowndecreaseduepotentialyetmainreasonsrarelyonescarcitydatacoverphysicalfactorspeakflowshighturbiditypreventgeneralspreadsubmergedobservedMoreoverdifferentcomparedlowerlimitationinsteaddependentriver/estuarytypeconcluderiverestuarycomplexdiversestilllittleknownequivalentlikelyoccurmidhigh-orderEcosystem-levelimbalancesglobalscalechlorophylloligotrophicationproducersrunningwatersstoichiometry

Similar Articles

Cited By (2)