Use of temporal contact graphs to understand the evolution of COVID-19 through contact tracing data.

Mincheng Wu, Chao Li, Zhangchong Shen, Shibo He, Lingling Tang, Jie Zheng, Yi Fang, Kehan Li, Yanggang Cheng, Zhiguo Shi, Guoping Sheng, Yu Liu, Jinxing Zhu, Xinjiang Ye, Jinlai Chen, Wenrong Chen, Lanjuan Li, Youxian Sun, Jiming Chen
Author Information
  1. Mincheng Wu: State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, 310027 China.
  2. Chao Li: State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, 310027 China.
  3. Zhangchong Shen: College of Control Science and Engineering, Zhejiang University, Hangzhou, 310027 China.
  4. Shibo He: State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, 310027 China. ORCID
  5. Lingling Tang: Shulan (Hangzhou) Hospital Affiliated to Shulan International Medical College, Zhejiang Shuren University, Hangzhou, 310015 China.
  6. Jie Zheng: Zhejiang Institute of Medical-care Information Technology, Hangzhou, 311100 China.
  7. Yi Fang: Westlake Institute for Data Intelligence, Hangzhou, 310012 China.
  8. Kehan Li: College of Control Science and Engineering, Zhejiang University, Hangzhou, 310027 China. ORCID
  9. Yanggang Cheng: College of Control Science and Engineering, Zhejiang University, Hangzhou, 310027 China.
  10. Zhiguo Shi: College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, 310027 China.
  11. Guoping Sheng: Shulan (Hangzhou) Hospital Affiliated to Shulan International Medical College, Zhejiang Shuren University, Hangzhou, 310015 China.
  12. Yu Liu: Westlake Institute for Data Intelligence, Hangzhou, 310012 China.
  13. Jinxing Zhu: Westlake Institute for Data Intelligence, Hangzhou, 310012 China.
  14. Xinjiang Ye: Westlake Institute for Data Intelligence, Hangzhou, 310012 China.
  15. Jinlai Chen: Westlake Institute for Data Intelligence, Hangzhou, 310012 China.
  16. Wenrong Chen: Westlake Institute for Data Intelligence, Hangzhou, 310012 China.
  17. Lanjuan Li: State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, 310027 China.
  18. Youxian Sun: State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, 310027 China.
  19. Jiming Chen: State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, 310027 China. ORCID

Abstract

Digital contact tracing has been recently advocated by China and many countries as part of digital prevention measures on COVID-19. Controversies have been raised about their effectiveness in practice as it remains open how they can be fully utilized to control COVID-19. In this article, we show that an abundance of information can be extracted from digital contact tracing for COVID-19 prevention and control. Specifically, we construct a temporal contact graph that quantifies the daily contacts between infectious and susceptible individuals by exploiting a large volume of location-related data contributed by 10,527,737 smartphone users in Wuhan, China. The temporal contact graph reveals five time-varying indicators can accurately capture actual contact trends at population level, demonstrating that travel restrictions (e.g., city lockdown) in Wuhan played an important role in containing COVID-19. We reveal a strong correlation between the contacts level and the epidemic size, and estimate several significant epidemiological parameters (e.g., serial interval). We also show that user participation rate exerts higher influence on situation evaluation than user upload rate does, indicating a sub-sampled dataset would be as good at prediction. At individual level, however, the temporal contact graph plays a limited role, since the behavior distinction between the infected and uninfected individuals are not substantial. The revealed results can tell the effectiveness of digital contact tracing against COVID-19, providing guidelines for governments to implement interventions using information technology.

Keywords

References

  1. Science. 2003 Jun 20;300(5627):1966-70 [PMID: 12766207]
  2. JAMA Netw Open. 2021 Apr 1;4(4):e218184 [PMID: 33929521]
  3. Nat Med. 2020 Oct;26(10):1616-1622 [PMID: 32770169]
  4. Nat Med. 2020 Apr;26(4):459-461 [PMID: 32284618]
  5. JMIR Public Health Surveill. 2022 May 19;8(5):e35653 [PMID: 35476726]
  6. JAMA. 2020 Apr 14;323(14):1406-1407 [PMID: 32083643]
  7. Nat Med. 2020 May;26(5):672-675 [PMID: 32296168]
  8. Ann Intern Med. 2020 May 05;172(9):577-582 [PMID: 32150748]
  9. Nature. 2020 Apr;580(7805):563 [PMID: 32350479]
  10. Science. 2020 May 1;368(6490):493-497 [PMID: 32213647]
  11. Nat Commun. 2013;4:2837 [PMID: 24302074]
  12. Nat Hum Behav. 2020 Sep;4(9):964-971 [PMID: 32759985]
  13. N Engl J Med. 2020 Mar 26;382(13):1199-1207 [PMID: 31995857]
  14. J Infect Dis. 2016 Dec 1;214(suppl_4):S421-S426 [PMID: 28830110]
  15. Science. 2003 Jun 20;300(5627):1961-6 [PMID: 12766206]
  16. Nature. 2020 Jun;582(7812):389-394 [PMID: 32349120]
  17. Nature. 2020 Dec;588(7838):384-387 [PMID: 33318682]
  18. Lancet Infect Dis. 2020 Aug;20(8):911-919 [PMID: 32353347]
  19. Proc Natl Acad Sci U S A. 2019 Jul 30;116(31):15407-15413 [PMID: 31315978]
  20. Science. 2020 May 8;368(6491): [PMID: 32234805]
  21. Lancet Digit Health. 2020 Apr;2(4):e201-e208 [PMID: 32309796]
  22. Kidney Int. 2020 May;97(5):829-838 [PMID: 32247631]
  23. Int J Surg. 2020 Apr;76:71-76 [PMID: 32112977]
  24. Lancet. 2020 Feb 29;395(10225):689-697 [PMID: 32014114]
  25. Nature. 2020 Aug;584(7821):420-424 [PMID: 32674112]
  26. Proc Natl Acad Sci U S A. 2022 Aug 16;119(33):e2203042119 [PMID: 35939676]
  27. Science. 2020 May 22;368(6493):860-868 [PMID: 32291278]
  28. J Infect. 2020 May;80(5):e1-e6 [PMID: 32171869]
  29. Int J Infect Dis. 2020 Mar;92:214-217 [PMID: 32007643]
  30. J Clin Med. 2020 Feb 17;9(2): [PMID: 32079150]
  31. Lancet Infect Dis. 2020 May;20(5):553-558 [PMID: 32171059]
  32. Nat Commun. 2021 Oct 11;12(1):5918 [PMID: 34635661]
  33. Emerg Infect Dis. 2020 May;26(5):1052-1054 [PMID: 32091386]
  34. Nat Med. 2020 Jun;26(6):855-860 [PMID: 32322102]
  35. Nat Commun. 2021 Jan 26;12(1):587 [PMID: 33500407]
  36. Health Inf Sci Syst. 2021 Apr 13;9(1):18 [PMID: 33868671]
  37. Phys Rev Lett. 2001 Apr 2;86(14):3200-3 [PMID: 11290142]
  38. Nat Med. 2020 Apr;26(4):506-510 [PMID: 32284616]
  39. Science. 2020 Apr 24;368(6489):395-400 [PMID: 32144116]

Word Cloud

Created with Highcharts 10.0.0contactCOVID-19tracingcantemporaldigitalgraphlevelChinapreventioneffectivenesscontrolshowinformationcontactsindividualsdataWuhanegroleuserrateDigitalrecentlyadvocatedmanycountriespartmeasuresControversiesraisedpracticeremainsopenfullyutilizedarticleabundanceextractedSpecificallyconstructquantifiesdailyinfectioussusceptibleexploitinglargevolumelocation-relatedcontributed10527737smartphoneusersrevealsfivetime-varyingindicatorsaccuratelycaptureactualtrendspopulationdemonstratingtravelrestrictionscitylockdownplayedimportantcontainingrevealstrongcorrelationepidemicsizeestimateseveralsignificantepidemiologicalparametersserialintervalalsoparticipationexertshigherinfluencesituationevaluationuploadindicatingsub-sampleddatasetgoodpredictionindividualhoweverplayslimitedsincebehaviordistinctioninfecteduninfectedsubstantialrevealedresultstellprovidingguidelinesgovernmentsimplementinterventionsusingtechnologyUsegraphsunderstandevolutionComputationalscienceStatistics

Similar Articles

Cited By