MDDI-SCL: predicting multi-type drug-drug interactions via supervised contrastive learning.

Shenggeng Lin, Weizhi Chen, Gengwang Chen, Songchi Zhou, Dong-Qing Wei, Yi Xiong
Author Information
  1. Shenggeng Lin: State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint International Research Laboratory of Metabolic & Developmental Sciences and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
  2. Weizhi Chen: State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint International Research Laboratory of Metabolic & Developmental Sciences and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
  3. Gengwang Chen: State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint International Research Laboratory of Metabolic & Developmental Sciences and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
  4. Songchi Zhou: State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint International Research Laboratory of Metabolic & Developmental Sciences and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
  5. Dong-Qing Wei: State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint International Research Laboratory of Metabolic & Developmental Sciences and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China. dqwei@sjtu.edu.cn.
  6. Yi Xiong: State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint International Research Laboratory of Metabolic & Developmental Sciences and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China. xiongyi@sjtu.edu.cn.

Abstract

The joint use of multiple drugs may cause unintended drug-drug interactions (DDIs) and result in adverse consequence to the patients. Accurate identification of DDI types can not only provide hints to avoid these accidental events, but also elaborate the underlying mechanisms by how DDIs occur. Several computational methods have been proposed for multi-type DDI prediction, but room remains for improvement in prediction performance. In this study, we propose a supervised contrastive learning based method, MDDI-SCL, implemented by three-level loss functions, to predict multi-type DDIs. MDDI-SCL is mainly composed of three modules: drug feature encoder and mean squared error loss module, drug latent feature fusion and supervised contrastive loss module, multi-type DDI prediction and classification loss module. The drug feature encoder and mean squared error loss module uses self-attention mechanism and autoencoder to learn drug-level latent features. The drug latent feature fusion and supervised contrastive loss module uses multi-scale feature fusion to learn drug pair-level latent features. The prediction and classification loss module predicts DDI types of each drug pair. We evaluate MDDI-SCL on three different tasks of two datasets. Experimental results demonstrate that MDDI-SCL achieves better or comparable performance as the state-of-the-art methods. Furthermore, the effectiveness of supervised contrastive learning is validated by ablation experiment, and the feasibility of MDDI-SCL is supported by case studies. The source codes are available at https://github.com/ShenggengLin/MDDI-SCL .

Keywords

References

  1. Nucleic Acids Res. 2022 Jan 7;50(D1):D1200-D1207 [PMID: 34634800]
  2. Comput Biol Med. 2021 Sep;136:104706 [PMID: 34371319]
  3. Brief Bioinform. 2022 Jan 17;23(1): [PMID: 34671814]
  4. BMC Bioinformatics. 2021 May 27;22(1):280 [PMID: 34044773]
  5. Brief Bioinform. 2022 Sep 20;23(5): [PMID: 35849817]
  6. Sci Transl Med. 2012 Mar 14;4(125):125ra31 [PMID: 22422992]
  7. IEEE Trans Pattern Anal Mach Intell. 2020 Feb;42(2):318-327 [PMID: 30040631]
  8. Brief Bioinform. 2018 Sep 28;19(5):863-877 [PMID: 28334070]
  9. Bioinformatics. 2020 Aug 1;36(15):4316-4322 [PMID: 32407508]
  10. Bioinformatics. 2021 Oct 19;: [PMID: 34664632]
  11. Bioinformatics. 2022 May 13;38(10):2847-2854 [PMID: 35561181]
  12. Nucleic Acids Res. 2018 Jan 4;46(D1):D1074-D1082 [PMID: 29126136]
  13. iScience. 2021 Apr 02;24(5):102393 [PMID: 33997678]
  14. Bioinformatics. 2021 Mar 15;: [PMID: 33720331]
  15. Nucleic Acids Res. 2014 Jan;42(Database issue):D1091-7 [PMID: 24203711]
  16. Mol Ther. 2021 Aug 4;29(8):2617-2623 [PMID: 33823302]
  17. Brief Bioinform. 2022 Jan 17;23(1): [PMID: 34893793]
  18. J Am Med Inform Assoc. 2012 Nov-Dec;19(6):1066-74 [PMID: 22647690]
  19. Chem Sci. 2022 Jul 13;13(29):8693-8703 [PMID: 35974769]
  20. Chem Sci. 2021 Nov 26;13(1):90-98 [PMID: 35059155]
  21. Anal Biochem. 2022 Jun 1;646:114631 [PMID: 35227661]
  22. Bioinformatics. 2021 Mar 26;: [PMID: 33769494]
  23. Bioinformatics. 2018 Mar 1;34(5):828-835 [PMID: 29077847]
  24. Nat Protoc. 2014 Sep;9(9):2147-63 [PMID: 25122524]
  25. Proc Natl Acad Sci U S A. 2018 May 1;115(18):E4304-E4311 [PMID: 29666228]
  26. J Am Med Inform Assoc. 2012 Jan-Feb;19(1):79-85 [PMID: 21676938]
  27. Sci Rep. 2015 Jul 21;5:12339 [PMID: 26196247]
  28. Brief Bioinform. 2022 May 13;23(3): [PMID: 35453147]
  29. Bioinformatics. 2021 May 1;37(4):542-550 [PMID: 32931549]
  30. BMC Bioinformatics. 2019 Aug 6;20(1):415 [PMID: 31387547]
  31. Brief Bioinform. 2022 Jan 17;23(1): [PMID: 34727569]
  32. Bioinformatics. 2018 Jul 1;34(13):i457-i466 [PMID: 29949996]
  33. Brief Bioinform. 2021 Jul 20;22(4): [PMID: 33126246]
  34. PLoS One. 2015 Oct 15;10(10):e0140816 [PMID: 26469276]
  35. Brief Bioinform. 2022 Jan 17;23(1): [PMID: 34965582]
  36. J Am Med Inform Assoc. 2014 Oct;21(e2):e278-86 [PMID: 24644270]
  37. BMC Bioinformatics. 2022 Feb 16;23(1):75 [PMID: 35172712]
  38. Methods. 2022 Aug;204:269-277 [PMID: 35219861]
  39. Nat Biotechnol. 2014 Dec;32(12):1213-22 [PMID: 25419740]

Grants

  1. 62172274/National Natural Science Foundation of China
  2. 19430750600/the Science and Technology Commission of Shanghai Municipality
  3. YG2021ZD02/Joint Research Fund for Medical and Engineering and Scientific Research at Shanghai Jiao Tong University

Word Cloud

Created with Highcharts 10.0.0losscontrastivedrugfeaturemodulesupervisedMDDI-SCLDDImulti-typepredictionlearninglatentfusionDDIsclassificationdrug-druginteractionstypesmethodsperformancethreeencodermeansquarederrorusesmechanismlearnfeaturesjointusemultipledrugsmaycauseunintendedresultadverseconsequencepatientsAccurateidentificationcanprovidehintsavoidaccidentaleventsalsoelaborateunderlyingmechanismsoccurSeveralcomputationalproposedroomremainsimprovementstudyproposebasedmethodimplementedthree-levelfunctionspredictmainlycomposedmodules:self-attentionautoencoderdrug-levelmulti-scalepair-levelpredictspairevaluatedifferenttasksof twodatasetsExperimentalresultsdemonstrateachievesbettercomparablestate-of-the-artFurthermoreeffectivenessvalidatedablationexperimentfeasibilitysupportedcasestudiessourcecodesavailablehttps://githubcom/ShenggengLin/MDDI-SCLMDDI-SCL:predictingviaDrug-druginteractionMulti-scaleMulti-typeSelf-attentionSupervised

Similar Articles

Cited By