Multimodal Fusion of Smart Home and Text-based Behavior Markers for Clinical Assessment Prediction.

Gina Sprint, Diane J Cook, Maureen Schmitter-Edgecombe, Lawrence B Holder
Author Information
  1. Gina Sprint: Department of Computer Science, Gonzaga University.
  2. Diane J Cook: School of Electrical Engineering and Computer Science, Washington State University.
  3. Maureen Schmitter-Edgecombe: Department of Psychology, Washington State University.
  4. Lawrence B Holder: School of Electrical Engineering and Computer Science, Washington State University.

Abstract

New modes of technology are offering unprecedented opportunities to unobtrusively collect data about people's behavior. While there are many use cases for such information, we explore its utility for predicting multiple clinical assessment scores. Because clinical assessments are typically used as screening tools for impairment and disease, such as mild cognitive impairment (MCI), automatically mapping behavioral data to assessment scores can help detect changes in health and behavior across time. In this paper, we aim to extract behavior markers from two modalities, a smart home environment and a custom digital memory notebook app, for mapping to ten clinical assessments that are relevant for monitoring MCI onset and changes in cognitive health. Smart home-based behavior markers reflect hourly, daily, and weekly activity patterns, while app-based behavior markers reflect app usage and writing content/style derived from free-form journal entries. We describe machine learning techniques for fusing these multimodal behavior markers and utilizing joint prediction. We evaluate our approach using three regression algorithms and data from 14 participants with MCI living in a smart home environment. We observed moderate to large correlations between predicted and ground-truth assessment scores, ranging from = 0.601 to = 0.871 for each clinical assessment.

Keywords

References

  1. IEEE J Transl Eng Health Med. 2016 Jun 10;4:2800311 [PMID: 27574577]
  2. Alzheimer Dis Assoc Disord. 2006 Oct-Dec;20(4):217-23 [PMID: 17132965]
  3. Front Psychol. 2019 Oct 22;10:2358 [PMID: 31695647]
  4. Pervasive Mob Comput. 2016 Jun;28:51-68 [PMID: 27346990]
  5. Disabil Rehabil Assist Technol. 2020 May;15(4):421-431 [PMID: 30907223]
  6. J Biomed Inform. 2021 Jun;118:103803 [PMID: 33965639]
  7. J Geriatr Psychiatry Neurol. 2021 Sep;34(5):357-369 [PMID: 32723128]
  8. Neuropsychol Rehabil. 2020 Oct;30(9):1829-1851 [PMID: 31046586]
  9. Br J Health Psychol. 2006 Sep;11(Pt 3):421-37 [PMID: 16870053]
  10. Memory. 2000 Sep;8(5):311-21 [PMID: 11045239]
  11. Computer (Long Beach Calif). 2013 Jul;46(7): [PMID: 24415794]
  12. Ann Neurol. 2013 Aug;74(2):199-208 [PMID: 23686697]
  13. Int J Med Inform. 2019 May;125:37-46 [PMID: 30914179]
  14. J Pers Assess. 1985 Feb;49(1):71-5 [PMID: 16367493]
  15. J Alzheimers Dis. 2022;85(1):73-90 [PMID: 34776442]
  16. Front Aging Neurosci. 2019 Aug 02;11:205 [PMID: 31427959]
  17. IEEE J Biomed Health Inform. 2018 Nov;22(6):1720-1731 [PMID: 29994359]
  18. NPJ Digit Med. 2019 Nov 4;2:106 [PMID: 31701020]
  19. J Clin Exp Neuropsychol. 1998 Jun;20(3):310-9 [PMID: 9845158]
  20. Arch Clin Neuropsychol. 2014 Dec;29(8):776-92 [PMID: 25344901]
  21. IEEE J Biomed Health Inform. 2016 Jul;20(4):1188-94 [PMID: 26292348]
  22. Front Psychol. 2021 Jan 15;11:624137 [PMID: 33519651]
  23. IEEE J Biomed Health Inform. 2021 Feb;25(2):559-567 [PMID: 32750924]
  24. IEEE Access. 2021;9:65033-65043 [PMID: 34017671]
  25. IEEE J Biomed Health Inform. 2017 Mar;21(2):339-348 [PMID: 26841424]
  26. IEEE Trans Pattern Anal Mach Intell. 2019 Feb;41(2):423-443 [PMID: 29994351]

Grants

  1. R44 AG078121/NIA NIH HHS
  2. R25 AG046114/NIA NIH HHS
  3. R01 AG065218/NIA NIH HHS
  4. R35 AG071451/NIA NIH HHS
  5. R01 EB009675/NIBIB NIH HHS

Word Cloud

Created with Highcharts 10.0.0behaviorassessmentmarkersclinicaldatascoresMCISmartassessmentsimpairmentcognitivemappingchangeshealthsmarthomeenvironmentappreflectlearningprediction=0BehaviorClinicalNewmodestechnologyofferingunprecedentedopportunitiesunobtrusivelycollectpeople'smanyusecasesinformationexploreutilitypredictingmultipletypicallyusedscreeningtoolsdiseasemildautomaticallybehavioralcanhelpdetectacrosstimepaperaimextracttwomodalitiescustomdigitalmemorynotebooktenrelevantmonitoringonsethome-basedhourlydailyweeklyactivitypatternsapp-basedusagewritingcontent/stylederivedfree-formjournalentriesdescribemachinetechniquesfusingmultimodalutilizingjointevaluateapproachusingthreeregressionalgorithms14participantslivingobservedmoderatelargecorrelationspredictedground-truthranging601871MultimodalFusionHomeText-basedMarkersAssessmentPredictionAppliedcomputing~Lifemedicalsciences~HealthinformaticsComputingmethodologies~MachineHuman-centeredcomputing~UbiquitousmobilecomputingNaturallanguageprocessinghomes

Similar Articles

Cited By